GAN

GAN

生成器 generator:G
判别器 discriminator:D
if G and D have enough capacity, they will reach a point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between the two distributions, i.e. D(x) = 1/2

MLE = minimize KL divergence

G*

GAN_第1张图片

=》
在这里插入图片描述

  1. 固定G,update D with gradient ascent(最优D:最大D)
    在这里插入图片描述

update:GAN_第2张图片
通过JS divergence 度量pdata 和pG 之间相似度(距离)

  1. 寻找minimize JS

训练Generator

update G: gradiant descent
GAN_第3张图片

Problem

Don’t update G too much

JS divergence is log2 if two distributions do not overlap

add noise to the inputs of discriminator (decay over time)

mode collapse

Least Square GAN (LSGAN): Linear

replace sigmoid with linear (replace classification with regression)

WGAN: Earth Mover’s Distance

你可能感兴趣的:(GAN,GAN)