# -*- coding: utf-8 -*-
"""
Spyder EditorThis is a temporary script file.
"""
import PIL.Image as IM
import cv2
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import time
RADIUS_LIST = [50,84,126,166,208,247,287,328,378,428,486]
HU_LENGTH = [16,24,24,24,24,24,24,24,29,36,40]
CIRCLE_NUMS = 11
#随机点破裂仿射
# Function to distort image
def elastic_transform(image, alpha, sigma, alpha_affine, random_state=None):
"""Elastic deformation of images as described in [Simard2003]_ (with modifications).
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5
"""
if random_state is None:
random_state = np.random.RandomState(None)shape = image.shape
shape_size = shape[:2]
# Random affine
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size, [center_square[0]+square_size, center_square[1]-square_size], center_square - square_size])
pts2 = pts1 + random_state.uniform(-alpha_affine, alpha_affine, size=pts1.shape).astype(np.float32)
M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma) * alpha
dz = np.zeros_like(dx)x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1)), np.reshape(z, (-1, 1))return map_coordinates(image, indices, order=1, mode='reflect').reshape(shape)
#加噪声
def noise(img,nums=100):
img_black_wai = np.zeros((1000,1000)).astype(np.uint8)
img_black_wai = cv2.circle(img_black_wai,(500,500),RADIUS_LIST[-1],(255,0,0),-1)
pos_black_list = list(zip(np.where(img_black_wai==0)[0],np.where(img_black_wai==0)[1]))
random_pos_list = np.random.randint(0,len(pos_black_list),np.random.randint(30,120))
for pos in random_pos_list:
pos = pos_black_list[pos]
w = np.random.randint(0,50)
h = np.random.randint(0,50)
# y = np.random.randint(50,img.shape[0]-50)
# x = np.random.randint(50,img.shape[1]-50)
xmin = max(0,pos[1]-w)
ymin = max(0,pos[0]-h)
xmax = min(img.shape[1],pos[1]+w)
ymax = min(img.shape[0],pos[0]+h)
img[ymin:ymax,xmin:xmax] = 255
for i in range(np.random.randint(3000,15000)):
y = np.random.randint(0,img.shape[0])
x = np.random.randint(0,img.shape[1])
img[y,x]=255
return img
# Define function to draw a grid
def draw_grid(im, grid_size):
# Draw grid lines
for i in range(0, im.shape[1], grid_size):
cv2.line(im, (i, 0), (i, im.shape[0]), color=(255,))
for j in range(0, im.shape[0], grid_size):
cv2.line(im, (0, j), (im.shape[1], j), color=(255,))
def get_image():
img_name = 'Affine_Line_'+str(time.time()).replace('.','')+'_xkk'+str(np.random.randint(0,92395))+'.jpg'
img_black = np.zeros((1000,1000)).astype(np.uint8)
plt.imshow(img_black,cmap='gray')
#img_black = cv2.circle(img_black,(200,200),3,(255,0,0),1)
for i in range(0,CIRCLE_NUMS):
img_black = cv2.circle(img_black,(500,500),RADIUS_LIST[i]+np.random.randint(-2,2),(255,0,0),HU_LENGTH[i]+np.random.randint(-2,2))
#cv2.imshow('img_black',img_black)
plt.imshow(img_black,cmap='gray')
plt.show()
#IM.fromarray(img_black).show()
img_canny = cv2.Canny(img_black,50,200)
#img_canny
plt.imshow(img_canny,cmap='gray')
plt.show()
pos_edge = list(zip(np.where(img_canny==255)[0],np.where(img_canny==255)[1]))
random_pos = np.random.randint(0,len(pos_edge),10)
#pos = pos_edge[random_pos[0]]
#生成干扰圆
for idx in random_pos:
pos = pos_edge[idx]
img_black = cv2.circle(img_black,(pos[1],pos[0]),20,(255,0,0),-1)
plt.imshow(img_black,cmap='gray')
plt.show()
#for x in range(0,1000):
#找最外层的圆 边界点,来画睫毛
img_black_wai = np.zeros((1000,1000)).astype(np.uint8)
img_black_wai = cv2.circle(img_black_wai,(500,500),RADIUS_LIST[-1],(255,0,0),1)
img_black_wai = cv2.Canny(img_black_wai,50,200)
pos_edge_wai_list = list(zip(np.where(img_canny==255)[0],np.where(img_canny==255)[1]))
count=0
#上方睫毛
for line_start in pos_edge_wai_list:
count+=1
if line_start[0]>30 or count%100==0:
continue
# print(1)
lengthx = np.random.randint(-200,300)
lengthy = np.random.randint(0,200)
img_black = cv2.line(img_black,(line_start[1],line_start[0]),(line_start[1]-lengthx ,line_start[0]+lengthy ),(0,0,0),5)
for line_start in pos_edge_wai_list:
count+=1
if line_start[0]>220 or count%70!=0:
continue
# print(1)
lengthx = np.random.randint(-300,400)
lengthy = np.random.randint(0,200)
img_black = cv2.line(img_black,(line_start[1],line_start[0]),(line_start[1]-lengthx ,line_start[0]+lengthy ),(0,0,0),5)
#下方睫毛
for line_start in pos_edge_wai_list:
count+=1
if line_start[0]<800 or count%200!=0:
continue
# print(1)
lengthx = np.random.randint(-50,50)
lengthy = np.random.randint(0,100)
img_black = cv2.line(img_black,(line_start[1],line_start[0]),(line_start[1]-lengthx ,30+line_start[0]-lengthy ),(0,0,0),5)
plt.imshow(img_black,cmap='gray')
plt.show()
img_black = cv2.cvtColor(img_black,cv2.COLOR_GRAY2RGB)
count = 0
random_idx = np.random.randint(0,len(pos_edge),np.random.randint(2,18))
affine_pos = []
for idx in random_idx :
pos = pos_edge[idx]
count+=1
# if count%5000!=0:
# continue
if pos[0]<50 or pos[0]>img_black.shape[0]-50:
continue
if pos[1]<50 or pos[1]>img_black.shape[1]-50:
continue
if pos[0]<300:
continue
im_merge = img_black[pos[0]-50:pos[0]+50,pos[1]-50:pos[1]+50,:]
im_merge_t = elastic_transform(im_merge, im_merge.shape[1] * np.random.randint(5,12), im_merge.shape[1] * 0.1*np.random.randint(1,5), im_merge.shape[1] * 0.02*np.random.randint(2,5))
img_black[pos[0]-50:pos[0]+50,pos[1]-50:pos[1]+50] = im_merge_t
savepath = 'D:\\xkkAI\\DryEye\\keras-frcnn-master\\xkk0715\\train_data\\'+img_name
newpos = pos+(savepath,)
affine_pos.append(newpos)
savepath = 'D:\\xkkAI\\DryEye\\keras-frcnn-master\\xkk0715\\train_data\\'+img_name
img_black = noise(img_black)
IM.fromarray(img_black).save(savepath )
#print(str(time.time()))
for pos in affine_pos:
xmin = pos[1]-50
print(pos)
ymin = pos[0]-50
xmax = pos[1]+50
ymax = pos[0]+50
img_final = cv2.rectangle(img_black,(xmin,ymin),(xmax,ymax),(255,0,0),3)
plt.imshow(img_final)
plt.show()
# plt.clf()
return affine_poswith open(r'D:\xkkAI\DryEye\keras-frcnn-master\xkk0715\anno.txt','a') as f:
for i in range(5000):
affine_pos = get_image()
for pos in affine_pos:
xmin = pos[1]-50
print(pos)
ymin = pos[0]-50
xmax = pos[1]+50
ymax = pos[0]+50
# img_final = cv2.rectangle(img_black,(xmin,ymin),(xmax,ymax),(255,0,0),3)
f.write(pos[2]+','+str(xmin)+','+str(ymin)+','+str(xmax)+','+str(ymax)+',posun\n')
#IM.fromarray(img_final).show()