spark2.3源码分析之ResultTask读取并处理shuffle file的流程(二)

概述

大部分map task与reduce task的执行是在不同的节点上,reduce执行时需要跨节点去拉取其它节点上的ShuffleMapTask结果,那么对集群内部的网络资源消耗会很严重。我们希望最大化地减少不必要的消耗, 于是对Shuffle过程的期望有: 

  • 完整地从map task端拉取数据到reduce 端。 
  • 在跨节点拉取数据时,尽可能地减少对带宽的不必要消耗。 
  • 减少磁盘IO对task执行的影响。 
  • 可优化的地方主要在于减少拉取数据的量及尽量使用内存而不是磁盘。

本文将从减少网络资源消耗的角度探讨reduce 端的Shuffle流程。主要知识点如下:

  • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存。
  • shuffle时,每个Reduce都需要获取每个map对应的输出,当一个reduce需要获取的一个map数据比较大(比如1G),这时候就会申请一个1G的堆外内存,而堆外内存是有限制的,这时候就出现了堆外内存溢出。
  • reduce task 去map端获取数据,reducer一边拉取数据一边聚合。

BlockStoreShuffleReader

概述

BlockStoreShuffleReader 通过从其他节点网络拉取block data数据的方式,读取指定的[startPartition, endPartition)范围内的数据。

成员变量

private[spark] class BlockStoreShuffleReader[K, C](
    handle: BaseShuffleHandle[K, _, C],  //shuffleHandle
    startPartition: Int,  //指定的startPartition
    endPartition: Int, //指定的endPartition
    context: TaskContext, 
    serializerManager: SerializerManager = SparkEnv.get.serializerManager,
    blockManager: BlockManager = SparkEnv.get.blockManager, 
    mapOutputTracker: MapOutputTracker = SparkEnv.get.mapOutputTracker)
 
private val dep = handle.dependency  //ShuffleDependency

read()方法

 reducer端在拉取数据时,有一个重要的调优参数如下:

spark.reducer.maxSizeInFlight
默认值:48m
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。如果可用的内存资源不足,出现reduce oom,则应该减少reduce task每次拉取的数据量  设置spark.reducer.maxSizeInFlight  24m。
 

/** Read the combined key-values for this reduce task */
  override def read(): Iterator[Product2[K, C]] = {
//创建ShuffleBlockFetcherIterator
    val wrappedStreams = new ShuffleBlockFetcherIterator(
      context,
      blockManager.shuffleClient,
      blockManager,
      mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition, endPartition),
      serializerManager.wrapStream,
      // Note: we use getSizeAsMb when no suffix is provided for backwards compatibility
//设置shuffle read task的buffer缓冲大小
      SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024,
      SparkEnv.get.conf.getInt("spark.reducer.maxReqsInFlight", Int.MaxValue),
      SparkEnv.get.conf.get(config.REDUCER_MAX_BLOCKS_IN_FLIGHT_PER_ADDRESS),
      SparkEnv.get.conf.get(config.MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM),
      SparkEnv.get.conf.getBoolean("spark.shuffle.detectCorrupt", true))
 
    val serializerInstance = dep.serializer.newInstance()
 
    // Create a key/value iterator for each stream
    val recordIter = wrappedStreams.flatMap { case (blockId, wrappedStream) =>
      // Note: the asKeyValueIterator below wraps a key/value iterator inside of a
      // NextIterator. The NextIterator makes sure that close() is called on the
      // underlying InputStream when all records have been read.
      serializerInstance.deserializeStream(wrappedStream).asKeyValueIterator
    }
 
    // Update the context task metrics for each record read.
    val readMetrics = context.taskMetrics.createTempShuffleReadMetrics()
    val metricIter = CompletionIterator[(Any, Any), Iterator[(Any, Any)]](
      recordIter.map { record =>
        readMetrics.incRecordsRead(1)
        record
      },
      context.taskMetrics().mergeShuffleReadMetrics())
 
    // An interruptible iterator must be used here in order to support task cancellation
    val interruptibleIter = new InterruptibleIterator[(Any, Any)](context, metricIter)
 
    val aggregatedIter: Iterator[Product2[K, C]] = 
//如果shuffleDependency定义了聚合
if (dep.aggregator.isDefined) {
//如果还定义了map端的聚合
      if (dep.mapSideCombine) {
        // We are reading values that are already combined
        val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
        dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
      } else {
//如果没有定义map端的聚合
        // We don't know the value type, but also don't care -- the dependency *should*
        // have made sure its compatible w/ this aggregator, which will convert the value
        // type to the combined type C
        val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
        dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
      }
    } else {
//如果没有定义聚合
      interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
    }
 
    // Sort the output if there is a sort ordering defined.
    val resultIter = dep.keyOrdering match {
//如果shuffleDependency定义了keyOrdering参数
      case Some(keyOrd: Ordering[K]) =>
        // Create an ExternalSorter to sort the data.
//创建外部排序器:ExternalSorter
        val sorter =
          new ExternalSorter[K, C, C](context, ordering = Some(keyOrd), serializer = dep.serializer)
        sorter.insertAll(aggregatedIter)
        context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
        context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
        context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes)
        // Use completion callback to stop sorter if task was finished/cancelled.
        context.addTaskCompletionListener[Unit](_ => {
          sorter.stop()
        })
        CompletionIterator[Product2[K, C], Iterator[Product2[K, C]]](sorter.iterator, sorter.stop())
      case None =>
        aggregatedIter
    }
 
    resultIter match {
      case _: InterruptibleIterator[Product2[K, C]] => resultIter
      case _ =>
        // Use another interruptible iterator here to support task cancellation as aggregator
        // or(and) sorter may have consumed previous interruptible iterator.
        new InterruptibleIterator[Product2[K, C]](context, resultIter)
    }
  }

 ShuffleBlockFetcherIterator

概述

该Iterator用于拉取多种block数据。对于local block,它将从本地block manager获取block数据;对于remote block,它通过使用BlockTransferService拉取remote block。

它会创建一个(BlockID,InputStream) 的tuple类型的迭代器,所以调用者可以通过管道的方式处理这些block。

它会对remote fetch进行限流,控制不会超过MaxBytesInFlight (一次请求中的最大字节数),从而避免使用了太多内存。MaxBytesInFlight即对应上面所说的调优参数spark.reducer.maxSizeInFlight。

成员变量

 * @param context [[TaskContext]], used for metrics update
 * @param shuffleClient [[ShuffleClient]] for fetching remote blocks
 * @param blockManager [[BlockManager]] for reading local blocks
 * @param blocksByAddress list of blocks to fetch grouped by the [[BlockManagerId]].
 *                        For each block we also require the size (in bytes as a long field) in
 *                        order to throttle the memory usage. Note that zero-sized blocks are
 *                        already excluded, which happened in
 *                        [[MapOutputTracker.convertMapStatuses]].
 * @param streamWrapper A function to wrap the returned input stream.
 * @param maxBytesInFlight max size (in bytes) of remote blocks to fetch at any given point.
 * @param maxReqsInFlight max number of remote requests to fetch blocks at any given point.
 * @param maxBlocksInFlightPerAddress max number of shuffle blocks being fetched at any given point
 *                                    for a given remote host:port.
 * @param maxReqSizeShuffleToMem max size (in bytes) of a request that can be shuffled to memory.
 * @param detectCorrupt whether to detect any corruption in fetched blocks.
 */
private[spark]
final class ShuffleBlockFetcherIterator(
    context: TaskContext,
    shuffleClient: ShuffleClient,
    blockManager: BlockManager,
    blocksByAddress: Iterator[(BlockManagerId, Seq[(BlockId, Long)])],
    streamWrapper: (BlockId, InputStream) => InputStream,
    maxBytesInFlight: Long,
    maxReqsInFlight: Int,
    maxBlocksInFlightPerAddress: Int,
    maxReqSizeShuffleToMem: Long,
    detectCorrupt: Boolean)
  extends Iterator[(BlockId, InputStream)] with DownloadFileManager with Logging {
 
/**
   * Queue of fetch requests to issue; we'll pull requests off this gradually to make sure that
   * the number of bytes in flight is limited to maxBytesInFlight.
   */
//FetchRequest队列,将FetchRequest入队,用以限制字节数不超过maxBytesInFlight
  private[this] val fetchRequests = new Queue[FetchRequest]

构造函数

初始化ShuffleBlockFetcherIterator时会调用initialize()方法

initialize()
 
private[this] def initialize(): Unit = {
    // Add a task completion callback (called in both success case and failure case) to cleanup.
    context.addTaskCompletionListener[Unit](_ => cleanup())
 
    // Split local and remote blocks.
//区分local block和remote block
    val remoteRequests = splitLocalRemoteBlocks()
    // Add the remote requests into our queue in a random order
    fetchRequests ++= Utils.randomize(remoteRequests)
    assert ((0 == reqsInFlight) == (0 == bytesInFlight),
      "expected reqsInFlight = 0 but found reqsInFlight = " + reqsInFlight +
      ", expected bytesInFlight = 0 but found bytesInFlight = " + bytesInFlight)
 
    // Send out initial requests for blocks, up to our maxBytesInFlight
//发送fetch request获取remote block
    fetchUpToMaxBytes()
 
    val numFetches = remoteRequests.size - fetchRequests.size
    logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))
    // Get Local Blocks
//获取local block
    fetchLocalBlocks()
    logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime))
  }

 fetchUpToMaxBytes()方法

private def fetchUpToMaxBytes(): Unit = {
    // Send fetch requests up to maxBytesInFlight. If you cannot fetch from a remote host
    // immediately, defer the request until the next time it can be processed.
 
    // Process any outstanding deferred fetch requests if possible.
    if (deferredFetchRequests.nonEmpty) {
      for ((remoteAddress, defReqQueue) <- deferredFetchRequests) {
        while (isRemoteBlockFetchable(defReqQueue) &&
            !isRemoteAddressMaxedOut(remoteAddress, defReqQueue.front)) {
          val request = defReqQueue.dequeue()
          logDebug(s"Processing deferred fetch request for $remoteAddress with "
            + s"${request.blocks.length} blocks")
          send(remoteAddress, request)
          if (defReqQueue.isEmpty) {
            deferredFetchRequests -= remoteAddress
          }
        }
      }
    }
 
    // Process any regular fetch requests if possible.
//如果FetchRequest队列头元素中的remote block可fetchable
    while (isRemoteBlockFetchable(fetchRequests)) {
//从FetchRequest队列中出队一个FetchRequest
      val request = fetchRequests.dequeue()
//获取该FetchRequest的address
      val remoteAddress = request.address
      if (isRemoteAddressMaxedOut(remoteAddress, request)) {
        logDebug(s"Deferring fetch request for $remoteAddress with ${request.blocks.size} blocks")
        val defReqQueue = deferredFetchRequests.getOrElse(remoteAddress, new Queue[FetchRequest]())
        defReqQueue.enqueue(request)
        deferredFetchRequests(remoteAddress) = defReqQueue
      } else {
        send(remoteAddress, request)
      }
    }
//发送fetch request
    def send(remoteAddress: BlockManagerId, request: FetchRequest): Unit = {
      sendRequest(request)
      numBlocksInFlightPerAddress(remoteAddress) =
        numBlocksInFlightPerAddress.getOrElse(remoteAddress, 0) + request.blocks.size
    }
 
//判断remote block是否可fetchable,主要判断条件是是否达到限流阈值
    def isRemoteBlockFetchable(fetchReqQueue: Queue[FetchRequest]): Boolean = {
      fetchReqQueue.nonEmpty &&
        (bytesInFlight == 0 ||
          (reqsInFlight + 1 <= maxReqsInFlight &&
//如果已有的字节数加上本次FetchRequest(队列的首元素)中的remote block size不超过maxBytesInFlight
            bytesInFlight + fetchReqQueue.front.size <= maxBytesInFlight))
    }
 
    // Checks if sending a new fetch request will exceed the max no. of blocks being fetched from a
    // given remote address.
//判断发送的fetch request是否超过给定remote address的最大block size
    def isRemoteAddressMaxedOut(remoteAddress: BlockManagerId, request: FetchRequest): Boolean = {
      numBlocksInFlightPerAddress.getOrElse(remoteAddress, 0) + request.blocks.size >
        maxBlocksInFlightPerAddress
    }
  }

 sendRequest()方法

private[this] def sendRequest(req: FetchRequest) {
    logDebug("Sending request for %d blocks (%s) from %s".format(
      req.blocks.size, Utils.bytesToString(req.size), req.address.hostPort))
    bytesInFlight += req.size
    reqsInFlight += 1
 
    // so we can look up the size of each blockID
    val sizeMap = req.blocks.map { case (blockId, size) => (blockId.toString, size) }.toMap
    val remainingBlocks = new HashSet[String]() ++= sizeMap.keys
    val blockIds = req.blocks.map(_._1.toString)
    val address = req.address
 
    val blockFetchingListener = new BlockFetchingListener {
      override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = {
        // Only add the buffer to results queue if the iterator is not zombie,
        // i.e. cleanup() has not been called yet.
        ShuffleBlockFetcherIterator.this.synchronized {
          if (!isZombie) {
            // Increment the ref count because we need to pass this to a different thread.
            // This needs to be released after use.
            buf.retain()
            remainingBlocks -= blockId
            results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf,
              remainingBlocks.isEmpty))
            logDebug("remainingBlocks: " + remainingBlocks)
          }
        }
        logTrace("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime))
      }
 
      override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = {
        logError(s"Failed to get block(s) from ${req.address.host}:${req.address.port}", e)
        results.put(new FailureFetchResult(BlockId(blockId), address, e))
      }
    }
 
    // Fetch remote shuffle blocks to disk when the request is too large. Since the shuffle data is
    // already encrypted and compressed over the wire(w.r.t. the related configs), we can just fetch
    // the data and write it to file directly.
    if (req.size > maxReqSizeShuffleToMem) {
//从远程节点异步拉取一系列的blocks
      shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
        blockFetchingListener, this)
    } else {
      shuffleClient.fetchBlocks(address.host, address.port, address.executorId, blockIds.toArray,
        blockFetchingListener, null)
    }
  }

NettyBlockTransferService

NettyBlockTransferService的继承关系

spark2.3源码分析之ResultTask读取并处理shuffle file的流程(二)_第1张图片

fetchBlocks()方法

override def fetchBlocks(
      host: String,
      port: Int,
      execId: String,
      blockIds: Array[String],
      listener: BlockFetchingListener,
      tempFileManager: DownloadFileManager): Unit = {
    logTrace(s"Fetch blocks from $host:$port (executor id $execId)")
    try {
      val blockFetchStarter = new RetryingBlockFetcher.BlockFetchStarter {
        override def createAndStart(blockIds: Array[String], listener: BlockFetchingListener) {
//创建TransportClient
          val client = clientFactory.createClient(host, port)
//创建OneForOneBlockFetcher
          new OneForOneBlockFetcher(client, appId, execId, blockIds, listener,
            transportConf, tempFileManager).start()
        }
      }
 
      val maxRetries = transportConf.maxIORetries()
      if (maxRetries > 0) {
        // Note this Fetcher will correctly handle maxRetries == 0; we avoid it just in case there's
        // a bug in this code. We should remove the if statement once we're sure of the stability.
        new RetryingBlockFetcher(transportConf, blockFetchStarter, blockIds, listener).start()
      } else {
        blockFetchStarter.createAndStart(blockIds, listener)
      }
    } catch {
      case e: Exception =>
        logError("Exception while beginning fetchBlocks", e)
        blockIds.foreach(listener.onBlockFetchFailure(_, e))
    }
  }

TransportClient

概述

从给定的流中拉取连续的chunk。TransportClient通过将数据分成几百kb到几mb不等的chunk,从而有效地传输大量的数据。

TransportClient#sendRPC()方法用于构建客户端与服务端之间的传输流。

TransportClient#fetchChunk()方法用于从流中拉取chunk。

一个典型的工作流如下:

client.sendRPC(new OpenFile("/foo"))  returns StreamId = 100
client.fetchChunk(streamId = 100, chunkIndex = 0, callback)
client.fetchChunk(streamId = 100, chunkIndex = 1, callback)
...
client.sendRPC(new CloseStream(100))

 TransportClient通过TransportClientFactory实现初始化。一个TransportClient可以对应多个stream,但是一个stream只能对应一个TransportClient,以防返回的数据乱序。

 TransportClient负责发送请求到server端,而TransportResponseHandler负责处理从server端接收回来的数据。

 //netty的channel实现类
private final Channel channel;
private final TransportResponseHandler handler;
@Nullable private String clientId;

参考:Spark性能调优之Shuffle调优

Executor是如何fetch shuffle的数据文件

 

 

 

你可能感兴趣的:(spark)