离散型特征处理get_dummies()方法

官方文档:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

get_dummies():对离散型数据进行one-hot编码

离散特征的编码分为两种情况:

1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码

2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射,如{X:1,XL:2,XXL:3}。

get_dummies()的用法:

参数:

  • data : array-like, Series, or DataFrame
  • prefix : string, list of strings, or dict of strings, default None
    String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes.
  • prefix_sep : string, default ‘_‘,If appending prefix separator/delimiter to use. Or pass a list or dictionary as with prefix.
  • dummy_na : bool, default False. Add a column to indicate NaNs, if False NaNs are ignored.
  • columns : list-like, default None Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.
  • sparse : bool, default False Whether the dummy-encoded columns should be be backed by a SparseArray (True) or a regular NumPy array (False).
  • drop_first : bool, default False Whether to get k-1 dummies out of categorical levels by removing the first level. New in version 0.18.0.
  • dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. New in version 0.23.0.

例子(官方文档):

>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s)
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
>>> s1 = ['a', 'b', np.nan]
>>> pd.get_dummies(s1)
   a  b
0  1  0
1  0  1
2  0  0
>>> pd.get_dummies(s1, dummy_na=True)
   a  b  NaN
0  1  0    0
1  0  1    0
2  0  0    1
>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'],
...                    'C': [1, 2, 3]})
>>> pd.get_dummies(df, prefix=['col1', 'col2'])
   C  col1_a  col1_b  col2_a  col2_b  col2_c
0  1       1       0       0       1       0
1  2       0       1       1       0       0
2  3       1       0       0       0       1
>>> pd.get_dummies(pd.Series(list('abcaa')))
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
4  1  0  0
>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)
   b  c
0  0  0
1  1  0
2  0  1
3  0  0
4  0  0
>>> pd.get_dummies(pd.Series(list('abc')), dtype=float)
     a    b    c
0  1.0  0.0  0.0
1  0.0  1.0  0.0
2  0.0  0.0  1.0

你可能感兴趣的:(python)