基于opencv3.1的特征检测、特征点匹配、图像拼接(一)

基于opencv3.1的特征检测、特征点匹配、图像拼接(一)

安装好opencv,opencv_contrib并全部配置好之后,查找了一些大佬的源码,竟无一能运行,主要存在两个问题:

  1. 无法打开 “opencv2/nonfree/nonfree.hpp”
  2. 无法打开 "opencv2/legacy/legacy.hpp
    问题在于,3.1版本的opencv的opencv2文件夹下没有nonfree和legacy子文件夹,开始在xfeatures2d文件夹下侥幸看到了nonfree.hpp以为可以抢救,后来发现并不可以,理想和现实差距很大。
    没有办法只好读opencv自带的源码;位置在:D:\opencv310\opencv\opencv_contrib\modules\xfeatures2d\samples(我的安装路径)
    里面有四个很重要的cpp,第三个是surf_matcher;
    D:\opencv310\opencv\opencv_contrib\modules\xfeatures2d\src(这个里面有surf.cpp的源码,暂时没有深入研究)

关于surf_matcher

第一次打开这个cpp之后竟无从下手,一堆模板类,主函数一进去就退出,加了几个断点并查阅资料后发现,改动以下部分再运行即可:
先把源码附上:(虽然长但是不是太难)

#include 
#include 
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/xfeatures2d.hpp"

using namespace cv;
using namespace cv::xfeatures2d;

const int LOOP_NUM = 10;
const int GOOD_PTS_MAX = 50;
const float GOOD_PORTION = 0.15f;

int64 work_begin = 0;
int64 work_end = 0;

static void workBegin()
{
    work_begin = getTickCount();
}

static void workEnd()
{
    work_end = getTickCount() - work_begin;
}

static double getTime()
{
    return work_end /((double)getTickFrequency() )* 1000.;
}

struct SURFDetector
{
    Ptr<Feature2D> surf;
    SURFDetector(double hessian = 800.0)
    {
        surf = SURF::create(hessian);
    }
    template<class T>
    void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
    {
        surf->detectAndCompute(in, mask, pts, descriptors, useProvided);
    }
};

template<class KPMatcher>
struct SURFMatcher
{
    KPMatcher matcher;
    template<class T>
    void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches)
    {
        matcher.match(in1, in2, matches);
    }
};

static Mat drawGoodMatches(
    const Mat& img1,
    const Mat& img2,
    const std::vector<KeyPoint>& keypoints1,
    const std::vector<KeyPoint>& keypoints2,
    std::vector<DMatch>& matches,
    std::vector<Point2f>& scene_corners_
    )
{
    //-- Sort matches and preserve top 10% matches
    std::sort(matches.begin(), matches.end());
    std::vector< DMatch > good_matches;
    double minDist = matches.front().distance;
    double maxDist = matches.back().distance;

    const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
    for( int i = 0; i < ptsPairs; i++ )
    {
        good_matches.push_back( matches[i] );
    }
    std::cout << "\nMax distance: " << maxDist << std::endl;
    std::cout << "Min distance: " << minDist << std::endl;

    std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;

    // drawing the results
    Mat img_matches;

    drawMatches( img1, keypoints1, img2, keypoints2,
                 good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                 std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS  );

    //-- Localize the object
    std::vector<Point2f> obj;
    std::vector<Point2f> scene;

    for( size_t i = 0; i < good_matches.size(); i++ )
    {
        //-- Get the keypoints from the good matches
        obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
        scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
    }
    //-- Get the corners from the image_1 ( the object to be "detected" )
    std::vector<Point2f> obj_corners(4);
    obj_corners[0] = Point(0,0);
    obj_corners[1] = Point( img1.cols, 0 );
    obj_corners[2] = Point( img1.cols, img1.rows );
    obj_corners[3] = Point( 0, img1.rows );
    std::vector<Point2f> scene_corners(4);

    Mat H = findHomography( obj, scene, RANSAC );
    perspectiveTransform( obj_corners, scene_corners, H);

    scene_corners_ = scene_corners;

    //-- Draw lines between the corners (the mapped object in the scene - image_2 )
    line( img_matches,
          scene_corners[0] + Point2f( (float)img1.cols, 0), scene_corners[1] + Point2f( (float)img1.cols, 0),
          Scalar( 0, 255, 0), 2, LINE_AA );
    line( img_matches,
          scene_corners[1] + Point2f( (float)img1.cols, 0), scene_corners[2] + Point2f( (float)img1.cols, 0),
          Scalar( 0, 255, 0), 2, LINE_AA );
    line( img_matches,
          scene_corners[2] + Point2f( (float)img1.cols, 0), scene_corners[3] + Point2f( (float)img1.cols, 0),
          Scalar( 0, 255, 0), 2, LINE_AA );
    line( img_matches,
          scene_corners[3] + Point2f( (float)img1.cols, 0), scene_corners[0] + Point2f( (float)img1.cols, 0),
          Scalar( 0, 255, 0), 2, LINE_AA );
    return img_matches;
}

////////////////////////////////////////////////////
// This program demonstrates the usage of SURF_OCL.
// use cpu findHomography interface to calculate the transformation matrix
int main(int argc, char* argv[])
{
    const char* keys =
        "{ h help     | false            | print help message  }"
        "{ l left     | box.png          | specify left image  }"
        "{ r right    | box_in_scene.png | specify right image }"
        "{ o output   | SURF_output.jpg  | specify output save path }"
        "{ m cpu_mode | false            | run without OpenCL }";

    CommandLineParser cmd(argc, argv, keys);
    if (cmd.has("help"))
    {
        std::cout << "Usage: surf_matcher [options]" << std::endl;
        std::cout << "Available options:" << std::endl;
        cmd.printMessage();
        return EXIT_SUCCESS;
    }
    if (cmd.has("cpu_mode"))
    {
        ocl::setUseOpenCL(false);
        std::cout << "OpenCL was disabled" << std::endl;
    }

    UMat img1, img2;

    std::string outpath = cmd.get<std::string>("o");

    std::string leftName = cmd.get<std::string>("l");
    imread(leftName, IMREAD_GRAYSCALE).copyTo(img1);
    if(img1.empty())
    {
        std::cout << "Couldn't load " << leftName << std::endl;
        cmd.printMessage();
        return EXIT_FAILURE;
    }

    std::string rightName = cmd.get<std::string>("r");
    imread(rightName, IMREAD_GRAYSCALE).copyTo(img2);
    if(img2.empty())
    {
        std::cout << "Couldn't load " << rightName << std::endl;
        cmd.printMessage();
        return EXIT_FAILURE;
    }

    double surf_time = 0.;

    //declare input/output
    std::vector<KeyPoint> keypoints1, keypoints2;
    std::vector<DMatch> matches;

    UMat _descriptors1, _descriptors2;
    Mat descriptors1 = _descriptors1.getMat(ACCESS_RW),
        descriptors2 = _descriptors2.getMat(ACCESS_RW);

    //instantiate detectors/matchers
    SURFDetector surf;

    SURFMatcher<BFMatcher> matcher;

    //-- start of timing section

    for (int i = 0; i <= LOOP_NUM; i++)
    {
        if(i == 1) workBegin();
        surf(img1.getMat(ACCESS_READ), Mat(), keypoints1, descriptors1);
        surf(img2.getMat(ACCESS_READ), Mat(), keypoints2, descriptors2);
        matcher.match(descriptors1, descriptors2, matches);
    }
    workEnd();
    std::cout << "FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
    std::cout << "FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;

    surf_time = getTime();
    std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";


    std::vector<Point2f> corner;
    Mat img_matches = drawGoodMatches(img1.getMat(ACCESS_READ), img2.getMat(ACCESS_READ), keypoints1, keypoints2, matches, corner);

    //-- Show detected matches

    namedWindow("surf matches", 0);
    imshow("surf matches", img_matches);
    imwrite(outpath, img_matches);

    waitKey(0);
    return EXIT_SUCCESS;
}

  1. 去掉152行的return EXIT_SUCCESS,否则直接运行到这里就退出了; 基于opencv3.1的特征检测、特征点匹配、图像拼接(一)_第1张图片
  2. 关于CommandLineParser类:
    基于opencv3.1的特征检测、特征点匹配、图像拼接(一)_第2张图片
    可以看到首先定义了keys指针,里面存储了5行字符串,每一行可以看做四部分,这些信息就是整个输入部分的输入指令集。
    第一行help用处就是在控制台输出信息,第二行三行分别表示输入的图片,这两张图片的路径在:
    D:\opencv\sources\samples\data;如果想运行此程序,需要把路径补充或者把图片复制到工程下;第四行表示匹配好的图片的位置,最后一行表示是否使用opencl加速运行。
    这里我们发现CommandLineParser中文意思就是命令行解析器,无非就是把文件路径和各种参数写在主文件里,方便使用。
  3. 关于Mat和Umat
    opencv3中引入新的图像容器对象Umat,他和Mat相似有不尽相同,起码直接对UMat进行imread就是错误的;
    UMat之所以被引入是因为这样可以使opencv自动在支持opencl的设备上使用GPU进行运算,不支持的机器上使用CPU运算,统一了接口。
    原则上,UMat和Mat对象是可以相互转换的,但是官方文档并不鼓励在一个方法和一段代码中同时使用这两种方式,然后有意思的事情来了,我们可以看到,这个surf_matcher里面就是混用了他们两个。

运行结果如图所示:

基于opencv3.1的特征检测、特征点匹配、图像拼接(一)_第3张图片
我们可以看到大体上都是正确的,对于有一定旋转变换,仿射变换的两张图,只有一个标志点明显出错无伤大雅吧;还暖心的把左边的区域在右边圈了出来,这个功能对我来说没卵用,所以我给删了。再来一张比较简单的:
基于opencv3.1的特征检测、特征点匹配、图像拼接(一)_第4张图片
只有平移变换,完全没有错误,耗时401ms;
最后放一张:
可以看到这张的错误就比较多了,耗时584ms,需要在进一步的图像拼接中进一步研究。

你可能感兴趣的:(opencv)