IEEE生物医学工程汇刊封面报道迄今最微弱ERP控制信号的脑-机接口系统




本站讯(通讯员 许敏鹏)日前,IEEE生物医学工程汇刊(TBME)以五月份封面论文(May 2018 issue cover image article)形式报道了天津大学神经工程团队的研究成果《微小偏侧化视觉刺激诱发下的极微弱事件相关电位脑-机接口系统》(A brain-computer interface based on miniature event-related potentials induced by very small lateral visual stimuli)。同时,该研究成果也被生物医学工程学会(EMBS)学会官方网站选为Feature Story,予以新闻特写和深度报道。

  脑-机接口(Brain-Computer Interface, BCI)旨在于人类大脑与外界环境之间建立起一条直接的信息交流通路,被公认为是新一代人机交互和人机混合智能的关键核心技术。其中,基于头皮脑电控制的BCI系统具有安全、便捷、高效等特点,是目前最为广泛的研究方式。但是,受脑电信号非线性、非平稳、高噪声等因素的限制,传统BCI系统通常只能识别幅值大于2μV的脑电显性特征,隐含更多信息量但相对更微弱的脑电信号一直是BCI的识别盲区。


IEEE生物医学工程汇刊封面报道迄今最微弱ERP控制信号的脑-机接口系统_第1张图片
  为了突破脑电信号的最小识别阈值,扩大BCI控制信号的类别范围、实现更加自然高效的脑-机交互,我校神经工程团队首次开发了基于极微弱事件相关电位的新型脑-机接口系统,设计出一种基于空-码分多址(Space-Code Division Multiple Access, SCDMA)的微弱视觉刺激范式及其相关脑电特征的解码方法——判别典型模式匹配(Discriminative Canonical Pattern Matching, DCPM)。与传统方法不同,该团队首次将脑电的空间对称性规律引入到空间滤波器的设计与构造当中,实验证明,该空间滤波器能够有效抑制大脑左右半球的共模噪声,从而大幅提高偏侧化极微弱事件相关电位的信噪比与可识别率,实现了对迄今最微弱脑电控制信号(幅值约为0.5μV)的准确识别与高效应用,也开辟了BCI系统编解码技术发展的新路径。   该论文第一作者为天津大学神经工程团队青年教师许敏鹏及博士生肖晓琳,明东教授为通讯作者。   IEEE生物医学工程(TBME)汇刊由美国电子电气工程师协会(IEEE)创办,是国际生物医学工程学会(EMBS)会刊,也是该领域最具权威、最有影响力的专业学术期刊之一,属于SJR一区期刊。其H因子(SJR)在国际生物医学工程领域290种专业期刊中排名第7, H5因子(Google Scholar)在国际生物医学技术领域专业期刊中排名前三。

你可能感兴趣的:(IEEE生物医学工程汇刊封面报道迄今最微弱ERP控制信号的脑-机接口系统)