- doris:SQL 方言兼容
向阳1218
大数据doris
提示从2.1版本开始,Doris可以支持多种SQL方言,如Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse等等。通过这个功能,用户可以直接使用对应的SQL方言查询Doris中的数据,方便用户将原先的业务平滑的迁移到Doris中。警告该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHubIssue等方式进行反馈。部署服务下载最新版
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 大数据面试之路 (三) mysql
愿与狸花过一生
大数据面试职场和发展
技术选型通常也是被问道的问题,一方面考察候选人对技术掌握程度,另一方面考察对项目的理解,以及项目总结能力。介绍项目是从数据链路介绍,是一个很好来的方式,会让人觉得思路清晰,项目理解透彻。将SparkSQL加工后的数据存入MySQL通常基于以下几个关键原因:1.数据应用场景适配OLTP与OLAP分工:SparkSQL擅长处理大数据量的OLAP(分析型)任务,而MySQL作为OLTP(事务型)数据库,
- 如何使用 SparkLLM 进行自然语言处理
shuoac
python
在当代自然语言处理领域,拥有强大的跨域知识和语言理解能力的模型至关重要。iFLYTEK开发的SparkLLM便是这样一个大规模认知模型。通过学习大量文本、代码和图像,SparkLLM能够理解和执行基于自然对话的任务。在本文中,我们将深入探讨如何配置和使用SparkLLM来处理自然语言任务。技术背景介绍大规模语言模型(LLM)近年来在各个领域中获得了广泛的应用,它们在处理自然语言任务时表现出色。iF
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 讲一下Spark的shuffle过程
冰火同学
Sparkspark大数据分布式
首先Spark的shuffle是Spark分布式集群计算的核心。Spark的shuffle可以从shuffle的阶段划分,shuffle数据存储,shuffle的数据拉取三个方面进行讲解。首先shuffle的阶段分为shuffle的shufflewrite阶段和shuffleread阶段。shufflewrite的触发条件就是上游的Stage任务shuffleMapTask完成计算后,会哪找下游S
- Spark常见面试题目(1)
冰火同学
Sparkspark面试大数据
Spark有哪几种部署的方式,谈谈方式都有哪些特点第一种是local本地部署,通常就是一台机器用于测试。第二种是standalone部署模式,就是一个master节点,控制几个work节点,其实一台机器的standalone模式就是它自己即是master,又是work。第三种是yarn模式,就是吧spark交给yarn进行资源调度管理。第四种就是messon模式,这种在国内很少见到。Spark主备
- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- PySpark实现导出两个包含多个Parquet数据文件的S3目录里的对应值的差异值分析
weixin_30777913
pythonspark数据分析云计算
编写PySpark代码实现从一个包含多个Parquet数据文件的AmazonS3目录的dataframe数据里取两个维度字段,一个度量字段的数据,根据这两个维度字段的数据分组统计,计算度量字段的数据的分组总计值,得到一个包含两个维度字段和度量字段的分组总计值字段的dataframe,再从另一个包含多个Parquet数据文件的S3目录的dataframe数据里取两个维度字段,一个度量字段的数据组成一
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据技术生态圈:Hadoop、Hive、Spark的区别和关系
雨中徜徉的思绪漫溢
大数据hadoophive
大数据技术生态圈:Hadoop、Hive、Spark的区别和关系在大数据领域中,Hadoop、Hive和Spark是三个常用的开源技术,它们在大数据处理和分析方面发挥着重要作用。虽然它们都是为了处理大规模数据集而设计的,但它们在功能和使用方式上存在一些区别。本文将详细介绍Hadoop、Hive和Spark的区别和关系,并提供相应的源代码示例。Hadoop:Hadoop是一个用于分布式存储和处理大规
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- Spark-TTS:基于大模型的文本语音合成工具
CITY_OF_MO_GY
魅力语音语音识别深度学习人工智能
GitHub:https://github.com/SparkAudio/Spark-TTSSpark-TTS是一个先进的文本到语音系统,它利用大型语言模型(LLM)的强大功能进行高度准确和自然的语音合成;旨在高效、灵活、强大地用于研究和生产用途。一、介绍SparkTTS完全基于Qwen2.5构建,无需额外的生成模型,它不依赖于单独的模型来生成声学特征,而是直接从LLM预测的代码中重建音频。这种方
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 大数据实战:Spark + Hive 逐笔计算用户盈亏
WuJiWeb3
区块链链上数据分析从0到1搭建区块链大数据平台sparkhive大数据web3区块链hadoop
简介本文将通过使用Spark+Hive实现逐笔计算区块链上用户交易数据的盈亏需求。由于我们是进行离线计算,所以我们的数据源是Hive表数据,Sink表也是Hive表,即Spark读取Hive表数据进行批计算之后写回到Hive表并供后续使用。通过本文你将会学到:如何使用SparkSQLAPI读取Hive数据源如何通过读取配置文件进行传参执行SQL如何将SparkSQL转换为JavaRDD进行处理如何
- 分布式计算入门(PySpark处理NASA服务器日志)
闲人编程
Python数据分析实战精要服务器运维统计分析日志NASA服务器分布式计算PySpark
目录分布式计算入门(PySpark处理NASA服务器日志)1.引言2.分布式计算概述2.1分布式计算的基本概念2.2ApacheSpark与PySpark3.NASA服务器日志数据集介绍3.1数据背景3.2数据格式与挑战4.PySpark基础与分布式日志处理4.1PySpark基本架构4.2日志数据加载与解析4.3数据清洗与内存优化4.4GPU加速与SparkRAPIDS5.实验环境与依赖库6.数
- Dask vs. Apache Spark: 大数据处理的利器对比与应用实例
步入烟尘
Python超入门指南全册apachespark大数据
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spark yum配置
Amu_Yalo
spark
yum配置Yum是一个linux工具,用来从网络上下载安装软件到CentOS操作系统中。先要确保虚拟机的网络是通畅的。(1)查看源yum中的源是指它从哪里去下载软件。把yum想象成你自己开的一家商场,那么yum的源就是你的供货商。通过yumrepolist命令可以去查看当前的供货商信息。(如果显示源信息是mirrorlist.centos.org(默认源),那就不能使用了。这个源已经失效了,就是你
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Scala_Spark_RDD_parttwo
Gadaite
Spark基础scalasparkbigdata
只做记录不展示结果(部分结果放在了代码的注释中):packagespark_rddimportorg.apache.spark.sql.SparkSessionobjectrdd_fiveextendsApp{overridedefmain(args:Array[String]):Unit={/***key-valueRDD*pairRDD*2021-10-31*/valp="-----"*20v
- Spark scala api(一)RDD编程
weixin_42521881
spark学习
基础初始化sparkvalconf=newSparkConf().setAppName("wordcount")valsc=newSparkContext(conf)转化操作和行动操作的区别在于spark计算rdd的方式不同,只有在第一次在一个行动操作中用到转化操作中的rdd时,才会真正计算这些rdd。创建rdd//驱动器程序对一个集合进行并行化vallines=sc.parallelize(Li
- Scala 中生成一个RDD的方法
闯闯桑
scala开发语言大数据
在Scala中,生成RDD(弹性分布式数据集)的主要方法是通过SparkContext(或SparkSession)提供的API。以下是生成RDD的常见方法:1.从本地集合创建RDD使用parallelize方法将本地集合(如Seq、List、Array等)转换为RDD。valspark=SparkSession.builder.appName("RDDExample").getOrCreate(
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- 大数据运维实战指南:零基础入门与核心技术解析(第一篇)
emmm形成中
大数据运维
大数据运维实战指南:零基础入门与核心技术解析(第一篇)系列文章目录第一篇:大数据运维概述与核心技能体系第二篇:Hadoop生态体系与集群部署实战第三篇:分布式存储系统运维与优化第四篇:资源调度框架YARN/K8s深度解析第五篇:实时计算框架Flink/Spark运维指南第六篇:大数据监控体系与自动化运维第七篇:云原生时代的大数据运维实践第八篇:数据安全与合规性管理第九篇:性能调优与故障排查案例集第
- spark集群,kafka集群和zookeeper的docker集群快速搭建
醉与浮
toolsdockersparkkafka
准备操作安装docker(宿主机)yuminstalldocker(宿主机时centos用yum管理包)systemctldaemon-reload(重加载deamon服务,是docker的核心)systemctlrestartdocker.service(重启docker服务)docker常用命令dockerps-a查看所有容器dockersearchUbuntu寻找Ubuntu的镜像docke
- 大数据计算框架深入:Spark SQL、DataFrame、RDD 性能优化
晴天彩虹雨
大数据sparkbigdata
1.引言ApacheSpark是当前最流行的大数据计算框架之一,其中SparkSQL、DataFrame和RDD(ResilientDistributedDataset)是数据处理的三大核心API。如何优化Spark作业的性能,是大数据开发者必须掌握的关键技能。本文将深入探讨SparkSQL、DataFrame和RDD的性能优化方法,并结合实际案例进行分析。2.SparkSQL性能优化(1)使用P
- Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建
遇安.YuAn
Spark大数据平台组件搭建hadoop大数据Sparkscala环境搭建
搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命名rz上传如果没有安装rz可以使用命令安装:yuminstall-ylrzsz这里我将scala解压到/opt/module目录下:tar-zxvf/op
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR