BZOJ 2284 贪食蛇(Sdoi2011 虐心搜索)

2284: [Sdoi2011]贪食蛇

Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 70 Solved: 37
Description

相信大家都玩过贪食蛇游戏,现在有一个改版贪食蛇游戏,跟传统的贪食蛇游戏一样,贪食蛇在活动区域内运动,吃食物,但是这个改版的贪食蛇游戏有着一些特别的规则。

活动区域:
贪食蛇的活动区域是一个R行C列的网格A,贪食蛇活动不能超过这个网格的范围。第i行第j列的方格用Ai,j表示。每个方格有一个整数权值,记作w(Aij)。0<=w(Aij)<=8,w(Aij)=0时,Aij禁止进入;w(Aij)>0时,Aij允许进入。

方向:
对于P=(X0,Y0)、Q=(X1,Y1),有以下四种基本方向:
l 正左(L):X0=X1且Y0=Y1-1,则称P位于Q的正左方向。
l 正右(R):X0=X1且Y0=Y1+1,则称P位于Q的正右方向。
l 正上(U):X0=X1-1且Y0=Y1,则称P位于Q的正上方向。
l 正下(D):X0=X1+1且Y0=Y1,则称P位于Q的正下方向。

贪食蛇:
贪食蛇B是占据若干方格的图形,占据的方格数为贪食蛇的长度,记为m,则贪食蛇从头到尾,用B1、B2、……、Bm表示。记p为贪食蛇的形态,若Bi位于第Xi行第Yi列,则p(Bi)=(Xi,Yi)。初始情况下,m=4,且运动过程中始终需要满足以下限制:
l 对于Bi和Bi+1(1<=i),就是贪食蛇的前、后相邻两部分,必须满足Bi位于Bi+1的L、R、U、D四个方向之一。
l 对于Bi和Bj(1<=i),p(Bi)=(Xi,Yi),p(Bj)=(Xj,Yj),需要满足Xi!=Xj或Yi!=Yj。也就是说,贪食蛇身体的任意一部分不能相交。

食物:
贪食蛇的活动区域内存在一些食物。每个食物位于一个允许进入的方格上,食物不会重叠。每个食物只能被吃一次。

贪食蛇的运动:
如果贪食蛇的头部B1的L、R、U、D四个方向之一的Aij能进入,且Aij上不存在食物,则贪食蛇可以向该方向运动,新的头部位于Aij上。记p’为贪食蛇新的形态,则:
l p’(Bk)=p(Bk-1),当2<=k<=m。
l p’(Bk)=(i,j),当k=1

贪食蛇的进食:
如果贪食蛇的头部B1的L、R、U、D四个方向之一的Aij能进入,且Aij上存在食物,则贪食蛇可以向该方向进食,新的头部位于Aij上,蛇的新长度m’=m+1。记p’为贪食蛇新的位置,则:
l p’(Bk)=p(Bk-1),当2<=k<=m’。
l p’(Bk)=(i,j),当k=1

注意:运动或进食后的贪食蛇形态,仅仅需要考虑变换后的形态是否满足限制,不需要考虑变换的过程。也就是说,原来形态合法的贪食蛇的头部可以运动到尾部的位置,因为在变换后头部和尾部仍不会重叠。

运动或进食所需要的时间:
贪食蛇运动或进食,需要消耗时间。设运动或进食前头部所在的方格是P,运动或进食后头部所在的方格是Q,则此次运动或进食的所消耗的时间为|w(P)-w(Q)|+1。

游戏的会在开始前给出贪食蛇的初始位置和所有食物的位置。你的任务是,以最少的时间令贪食蛇吃完所有食物。
Input

第一行,两个正整数R、C。
接下来R行,每行C个没有空格分隔的数字。其中第i行第j个数字为w(Aij)。
接下来4行,每行2个正整数。第i行的两个整数Xi、Yi,表示p(Bi)=(Xi,Yi)。
接下来一个正整数N,表示食物的数量。
接下来N行,每行2个正整数i、j,表示Aij上存在一个食物。
Output

如果贪食蛇不能吃到所有的食物,输出“No solution.”(不包括引号)。
否则,输出:
第一行,一个整数,表示所需花费的时间;
Sample Input

5 5

11011

11011

11011

11011

11411

1 1

2 1

3 1

4 1

4

5 5

4 4

2 5

1 4

【样例输出】

21

Sample Output

HINT

对于20%的数据,N <= 1。

对于40%的数据,N <= 2。

对于60%的数据,N <= 3。

对于100%的数据,N <= 4。

对于30%的数据,R * C <= 36。

对于100%的数据,R <= 12,C <= 12。
BZOJ 2284 贪食蛇(Sdoi2011 虐心搜索)_第1张图片
BZOJ 2284 贪食蛇(Sdoi2011 虐心搜索)_第2张图片
BZOJ 2284 贪食蛇(Sdoi2011 虐心搜索)_第3张图片
BZOJ 2284 贪食蛇(Sdoi2011 虐心搜索)_第4张图片
直接上代码吧:(当然不是我写的)

#include 
#include 
#include 

const int FX[]  = {0, 0, -1, 1};
const int FY[]  = {-1, 1, 0, 0};
const char FC[] = {'L', 'R', 'U', 'D'};

const long MaxR = 17, MaxC = 17, MaxS = 1 << 11, MaxQ = 255 * 1200 * 16 * 8, MaxV = 1 << 23;

int Map[MaxR][MaxC], Snake_Pos[4][2], Food_N, Food_Map[MaxR][MaxC];
int Stat[MaxS][4], Food_Stat[MaxS][4];
int Queue[MaxQ], Prec[MaxQ];
unsigned char Visit[MaxV];

int Answer_Link, Answer_N, Answer_Time;
char Answer_C[MaxR * MaxC];

int input()
{
    int r, c;
    char map_tmp[MaxC << 1];

    scanf("%d%d", &r, &c);
    for (int i = 1; i <= r; ++ i) {
        scanf("%s", map_tmp);
        for (int j = 1; j <= c; ++ j)
            Map[i][j] = map_tmp[j - 1] - '0';
    }
    for (int i = 0; i <= r + 1; ++ i)
        Map[i][0] = Map[i][c + 1] = 0;
    for (int i = 1; i <= c; ++ i)
        Map[0][i] = Map[r + 1][i] = 0;

    for (int i = 0; i < 4; ++ i)
        scanf("%d%d", &Snake_Pos[i][0], &Snake_Pos[i][1]);

    memset(Food_Map, 0, sizeof(Food_Map));
    scanf("%d", &Food_N);
    for (int i = 1; i <= Food_N; ++ i) {
        scanf("%d%d", &r, &c);
        Food_Map[r][c] = i;
    }

    return 0;
}

int expand(int stat, int len, int k)
{
    int tmp = stat, x, y;
    len += 4;
    k ^= 1;

    x = FX[k];
    y = FY[k];
    for (int i = 2; i < len; ++ i) {
        x += FX[tmp & 3];
        y += FY[tmp & 3];
        tmp >>= 2;
        if (!x && !y) return -1;
    }

    return (stat << 2 & ((1 << (len + len - 2)) - 1)) | k;
}

int calc_stat()
{
    int head = 0, tail = 1, Visit[1 << 14] = {0};
    memset(Stat, 0xFF, sizeof(Stat));
    memset(Food_Stat, 0xFF, sizeof(Food_Stat));

    for (int i = 3; i > 0; -- i) {
        int k = 0;
        while (Snake_Pos[i - 1][0] + FX[k] != Snake_Pos[i][0] || Snake_Pos[i - 1][1] + FY[k] != Snake_Pos[i][1])
            ++ k;

        Queue[1] = Queue[1] << 2 | k;
    }
    Queue[1] <<= 2;
    Visit[Queue[1]] = true;

    while (head < tail) {
        ++ head;
        int s0 = Queue[head];
        int snake_stat0 = s0 >> 2;
        int snake_len   = s0 & 3;

        for (int k = 0; k < 4; ++ k) {
            int snake_stat1 = expand(snake_stat0, snake_len, k);

            if (snake_stat1 >= 0) {
                int s1 = (snake_stat1 & 0xFFF) << 2 | snake_len;

                if (!Visit[s1]) {
                    Queue[++ tail] = s1;
                    Visit[s1] = tail;
                }
                Stat[head][k] = Visit[s1];
            }
        }

        for (int k = 0; k < 4; ++ k) {
            int snake_stat1 = expand(snake_stat0, snake_len + 1, k);
            if (snake_stat1 >= 0) {
                if (snake_len < 3) {
                    int s1 = (snake_stat1 & 0xFFF) << 2 | (snake_len + 1);
                    if (!Visit[s1]) {
                        Queue[++ tail] = s1;
                        Visit[s1] = tail;
                    }
                    Food_Stat[head][k] = Visit[s1];
                } else {
                    Food_Stat[head][k] = 0;
                }
            }
        }
    }

    return 0;
}

#define make_stat(x, y, ss, fs, wt) ((x) << 22 | (y) << 18 | (ss) << 7 | (fs) << 3 | (wt))

int bfs()
{
    int head = 0, tail = 1;
    memset(Visit, 0, sizeof(Visit));

    Queue[1] = make_stat(Snake_Pos[0][0], Snake_Pos[0][1], 1, (1 << Food_N) - 1, 0);
    Visit[Queue[1] >> 3] |= 1 << 0;

    while (head < tail) {
        int s0 = Queue[++ head];
        int x0          = s0 >> 22 & 0xF,
            y0          = s0 >> 18 & 0xF,
            snake_stat0 = s0 >>  7 & 0x7FF,
            food_stat0  = s0 >>  3 & 0xF,
            wait_time0  = s0 & 7;

        if (!food_stat0 && !wait_time0) {
            Answer_Link = head;
            break;
        }

        if (wait_time0) {
            int s1 = make_stat(x0, y0, snake_stat0, food_stat0, wait_time0 - 1);
            if (!(Visit[s1 >> 3] & 1 << (wait_time0 - 1))) {
                Queue[++ tail] = s1;
                Visit[s1 >> 3] |= 1 << (wait_time0 - 1);
                Prec[tail] = head;
            }
        } else {
            for (int k = 0; k < 4; ++ k) {
                int x1          = x0 + FX[k],
                    y1          = y0 + FY[k],
                    snake_stat1 = Stat[snake_stat0][k],
                    food_stat1  = food_stat0,
                    wait_time1  = abs(Map[x1][y1] - Map[x0][y0]);

                if (!Map[x1][y1]) continue;

                if (Food_Map[x1][y1] && food_stat0 & 1 << (Food_Map[x1][y1] - 1)) {
                    snake_stat1 = Food_Stat[snake_stat0][k];
                    food_stat1 ^= 1 << (Food_Map[x1][y1] - 1);
                } else {
                    snake_stat1 = Stat[snake_stat0][k];
                }

                if (snake_stat1 < 0) continue;

                int s1 = make_stat(x1, y1, snake_stat1, food_stat1, wait_time1);
                if (!(Visit[s1 >> 3] & 1 << wait_time1)) {
                    Queue[++ tail] = s1;
                    Visit[s1 >> 3] |= 1 << wait_time1;
                    Prec[tail] = head;
                }
            }
        }
    }

    return 0;
}

int calc_answer()
{
    int p1 = Answer_Link;
    Answer_Time = Answer_N = 0;

    while (p1 > 1) {
        ++ Answer_Time;

        int p0 = Prec[p1];
        int wait_time = Queue[p0] & 7;
        if (!wait_time) {
            int x0 = Queue[p0] >> 22 & 0xF,
                y0 = Queue[p0] >> 18 & 0xF,
                x1 = Queue[p1] >> 22 & 0xF,
                y1 = Queue[p1] >> 18 & 0xF;
            int k = 0;
            while (x0 + FX[k] != x1 || y0 + FY[k] != y1)
                ++ k;
            Answer_C[Answer_N ++] = FC[k];
        }

        p1 = p0;
    }

    for (int i = 0; i < (Answer_N >> 1); ++ i) {
        char tmp = Answer_C[i];
        Answer_C[i] = Answer_C[Answer_N - i - 1];
        Answer_C[Answer_N - i - 1] = tmp;
    }
    return 0;
}

int solve()
{
    calc_stat();
    bfs();
    calc_answer();
    return 0;
}

int output()
{
    if (Answer_Link) {
        printf("%d\n", Answer_Time);
        for (int i = 0; i < Answer_N; ++ i)
            printf("%c", Answer_C[i]);
        printf("\n");
    } else {
        printf("No solution.\n");
    }
    return 0;
}

int main()
{
    freopen("snake.in", "r", stdin);
    freopen("snake.out", "w", stdout);
    input();
    solve();
    output();
    return 0;
}

你可能感兴趣的:(BZOJ,搜索)