Python中写多进程的程序,一般都使用multiprocesing模块。进程间通讯有多种方式,包括信号,管道,消息队列,信号量,共享内存,socket等。这里主要介绍使用multiprocessing.Manager模块实现进程间共享数据。
Python中进程间共享数据,处理基本的queue,pipe和value+array外,还提供了更高层次的封装。使用multiprocessing.Manager可以简单地使用这些高级接口。
Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。
import multiprocessing
import time
def worker(d, key, value):
d[key] = value
if __name__ == '__main__':
mgr = multiprocessing.Manager()
d = mgr.dict()
jobs = [ multiprocessing.Process(target=worker, args=(d, i, i*2))
for i in range(10)
]
for j in jobs:
j.start()
for j in jobs:
j.join()
print ('Results:' )
for key, value in enumerate(dict(d)):
print("%s=%s" % (key, value))
# the output is :
# Results:
# 0=0
# 1=1
# 2=2
# 3=3
# 4=4
# 5=5
# 6=6
# 7=7
# 8=8
# 9=9
默认情况下,使用multiprocess.Queue()只是在两个进程之间进行通信,如下示例:
import multiprocessing, time
def task(args):
count = args[0]
queue = args[1]
for i in xrange(count):
queue.put("%d mississippi" % i)
return "Done"
def main():
q = multiprocessing.Queue()
pool = multiprocessing.Pool()
result = pool.map_async(task, [(x, q) for x in range(10)])
time.sleep(1)
while not q.empty():
print q.get()
print result.get()
if __name__ == "__main__":
main()
如何在多进程间共享queue呢?
我们可以尝试使用multiprocessing.Manager来管理队列,并让不同的进程可以访问它。
解决方案如下:
import multiprocessing
def worker(name, que):
que.put("%d is done" % name)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=3)
m = multiprocessing.Manager()
q = m.Queue()
workers = pool.apply_async(worker, (33, q))