看到这里的小盆友们千万不要觉得这个东西很难,其实就是个1+1->1(1个定义+1个定理->1坨乘法逆元).Let’s begin.
这个我们就不要玩笑了,来,直接看定义:
乘法:是指将相同的数加起来的快捷方式。(呵呵呵)
逆元素:指一个可以取消另一给定元素运算的元素,在数学里,逆元素广义化了加法中的加法逆元和乘法中的倒数。(???)
乘法逆元:群G中任意一个元素a,都在G中有唯一的逆元a‘,具有性质aa’=a’a=e,其中e为群的单位元。(!!!)
咳咳,是不是觉得最后两个很高深?其实第二个不用管,你只需要知道第3个,你可以这样理解:
有一个数a,一个模数M,当
当a=5,M=8时,此时5,8互质,那我们凑一凑又可以凑出: 5*5≡1(mod 8),呀!一组乘法逆元又出现了!此时5,5就互为乘法逆元.
当a=10,M=3时,此时10,3互质,那我们凑一凑又可以凑出: 10*1≡1(mod 3),呀!一组乘法逆元又出现了!此时10,1就互为乘法逆元.
我们可以发现,在同一M下当gcd(a,M)=1时可能有许多b满足ab≡1(mod M)比如第一个例子 4*2≡1(mod 7),同时4*9≡1(mod 7),4*16≡1(mod 7),说明同一a可能与多个b互为乘法逆元.
好吧,现在对乘法逆元大概了解一丢丢了吧?
补充一下,这里的b我们又可以记作inv(a)
至于怎么证明的,呵呵,作者并不知道,貌似是跟剩余系有关,有兴趣的盆友们自己查查吧,它的内容是:
假如p是质数,且
那么,今天最重要的来了
当有a,M满足gcd(a,M)=1,我们根据费马小定理可以得到:
这是我的另一篇博客….题目大意和跟乘法逆元没有关系的部分(是关于计数方面问题)先在里面看了吧(好吧,我这个可爱的人在刷阅读量)
…………………………………..
好了,相信你已经看到了这道题组合计数长这个样子:
for(int i=b+1;i<=w;i++)//推导计数方法
ans=(ans+C(h-a+i-2,i-1)*C(a+w-i-1,a-1)%MOD)%MOD;
好了,最重要的问题来了,C(m,n)怎么算??
我们知道,当m,n很小时,我们可以直接硬算.But,这里H,W都是100000级别的数,这样做肯定会TLE的,于是我们就要预处理:
我们知道C(m,n)是这样算的:
for(int i=1;i<=2*MAXN;i++) s[i]=s[i-1]*i%MOD;
这里为什么是2*MAXN?你看看我们的计数式子就知道了
问题是组合下半部分怎么搞??我们知道,模运算中遇到除法是不能直接除的,因为有模数MOD但我们是不是可以变形成这样?
LL QuPow(LL x,LL y){//快速幂
LL ret=1;
while(y){
if(y&1) ret=ret*x%MOD;
x=x*x%MOD;
y>>=1;
}
return ret;
}
inv[0]=1;
inv[2*MAXN]=QuPow(s[2*MAXN],MOD-2);
好了,那么其实你知道了除以最大s[i]怎么转换,就能知道剩下的所有:
for(int i=2*MAXN-1;i>=1;i--)
inv[i]=inv[i+1]*(i+1)%MOD;
好了,这处理完了算C(m,n)就简单了:
LL C(LL m,LL n){//计算排列
return s[m]*inv[n]%MOD*inv[m-n]%MOD;
}
是不是很神奇?
牢记一句话:在gcd(a,M)=1时,除以a等价于乘a的乘法逆元
代码自己跳回去看吧,顺便点个赞我是最喜欢的~~~
(AtCoder - 1974)いろはちゃんとマス目 / Iroha and a Grid(乘法逆元+组合计数)