机器学习系统Python接口

Scikit-Learn

  • Base class
    • estimator
    • classifier
    • cluster
    • regressor
    • transformer
  • Datasets
    • datasets.load_svmlight_files(files, n_features, dtype)
  • Cluster
    • cluster.KMeans(n_cluster, max_iter, n_init, init:{kmeans++,random}).fit(X).predict(X)
    • cluster.DBSCAN(eps, min_scample, m etric, algorithm: {auto, ball_tree, kd_tree}).fit(X).predict(X)
  • Matrix Decomposition
    • decomposition.NMF(n_components, init_method, solver: {'pg', 'cd'}, tolerance, max_iter, alpha, l1_ratio).fit(X).transform(X)
  • Ensemble
    • ensemble.GradientBoostingClassifiler(loss: {logloss, expo}, learning_rate, n_trees, max_depth, criterion: {mse, mae}, min_split_samples, min_leaf_samples, min_leaf_weight, subsample, max_features, max_leaf_nodes).fit(X,y).predict(X)
    • ensemble.GradientBoostingRegressor()
    • ensemble.RandomForestClassifier(n_trees, criterion: {gini, entropy}, max_features, max_depth, min_split_samples, min_leaf_samples, max_leaf_nodes).fit(X,y).predict(X)
    • ensemble.RandomForestRegressor()
  • Generalized Linear Model
    • linear_model.LinearRegression(fit_intercept, normalize).fit(X,y).predict(X,y)
    • linear_model.LogisticRegression(penalty: {l1, l2}, fit_intercept, max_iter, solver: {newton, lbfgs, liblinear, sag}, tolerance).fit(X,y),predict(X)
    • linear_model.lasso
    • linear_model.SGDClassifiler(loss: {hinge, log, squared_loss}, penalty, alpha, l1_ratio, fit_intercept, max_iter, shuffle, learning_rate: {constant, optimal, invscaling}, eta0, power_t).fit(X,y),predict(X)
  • Metrics
    • metrics.accuracy_score(y_true,y_pred)
    • metrics.auc
    • metrics.f1_score
    • metrics.hinge_loss
    • metrics.log_loss
    • metrics.precision_recall_curve
    • metrics.roc
    • metrics.mean_absolute_error
    • metrics.mean_squared_error
  • Pipeline
    • pipeline.Pipeline(steps)
  • Preprocessing
    • preprocessing.MaxAbsScaler
    • preprocessing.Normalizer
    • preprocessing.OneHotEncoder
  • Support Vector Machine

Keras

  • Input
  • Dense
  • Model(input, output).compile(optimizer,loss,metric).fit().evaluate().predict()
  • Optimizer
  • Loss
  • Metric

PyTorch

  • Tensor
  • Storage
  • Optim

你可能感兴趣的:(机器学习系统Python接口)