- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- 400多个免费在线编程与计算机科学课程
zhufafa
基础理论课程理论计算机基础免费
来源:medium作者:DhawalShah五年前,麻省理工学院和斯坦福大学等学校首先向公众开放免费的在线课程。如今,全球有700多所学校创造了数以千计的免费在线课程。从入门到精通系列,是作者通过ClassCentral的课程数据库整理的400多个免费在线课程的简介和链接(来源于ClassCentral,一个在线课程搜索引擎),根据课程难度分为入门、进阶和高阶三大类,每门课程还有星级评分(统计自C
- 信创海光x86服务器,定义、特点及应用详解
信创海光x86服务器是中国近年来在信息技术领域努力实现自主可控的成果之一,旨在打破国外技术封锁和限制,这类服务器的核心特点基于x86架构,这是一种广泛应用于全球的微处理器架构,由英特尔公司最初设计,海光作为国产处理器的代表之一,其技术基础来源于AMDZen的授权,主要面向服务器市场。服务器核心:海光C863350处理器海光C863350处理器是一款基于x86架构的高性能CPU,具体参数包括8核心1
- 精益敏捷之道(一)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/0b2addbef6e2afb0ce49d44d7300959a译者:飞龙协议:CCBY-NC-SA4.0前言“精益敏捷之道:通过价值流管理释放企业潜力”一书源于首席作者塞西尔·‘加里’·鲁普与尊敬的同事理查德·克纳斯特、史蒂夫·佩雷拉和艾尔·沙洛韦的合作努力。他们的目标是为IT专家、商业专业人士以及各行业和组织的领域专家提供一本关于现代精益敏捷和
- SpringBoot集成LangChain4j:构建智能AI应用全解析
java干货仓库
八股文汇总Spring大模型springboot人工智能后端
在企业级应用中融入大语言模型(LLM)能力已成为趋势,而LangChain4j作为专为Java设计的LLM集成框架,与SpringBoot的结合为开发者提供了强大而灵活的解决方案。本文将从基础概念到高级应用,全面解析如何利用这一组合构建智能AI应用。一、LangChain4j概述1.1什么是LangChain4j?LangChain4j是一个开源Java框架,灵感来源于Python的LangCha
- TestNG-自动化测试框架
一、TestNG简介TestNG是一套开源的单元测试框架,它的灵感来源于JUnit,但其功能比JUnit强大,它支持更多的注解、并行测试、更多的参数化方法等。TestNG和JUnit都是java中常用的单元测试框架,二者的共同点有:都是基于注解的测试框架都可以对java代码进行单元测试都支持断言机制TestNG相较于JUnit有如下特点:TestNG支持更多的注解;TestNG支持并行测试,在测试
- 如何通过YashanDB提升数据处理效率
数据库
在如今的数据库技术领域,企业面临着数据处理效率的挑战。这些挑战来源于各种因素,包括性能瓶颈、数据一致性问题以及日益增长的数据量。这些问题不仅影响了数据的处理速度,而且也对决策的实时性提出了更高的要求。因此,选择一个高效的数据库系统显得尤为重要。YashanDB凭借其先进的架构和处理能力,可以有效提升数据处理效率。本文将深入分析YashanDB的关键技术及其如何改善数据处理过程,以及为技术人员提供具
- 华为OD机试_2025 最长的顺子(Python,100分)(附详细解题思路)
蜗牛的旷野
华为OD机试Python版华为odpython算法
题目描述斗地主起源于湖北十堰房县,据说是一位叫吴修全的年轻人根据当地流行的扑克玩法“跑得快”改编的,如今已风靡整个中国,并流行于互联网上。牌型:单顺,又称顺子,最少5张牌,最多12张牌(3…A)不能有2,也不能有大小王,不计花色。例如:3-4-5-6-7-8,7-8-9-10-J-Q,3-4-5-6-7-8-9-10-J-Q-K-A可用的牌30)#标记是否可用#寻找最长顺子max_length=0
- Java内功修炼系列:依赖倒置、控制反转、依赖注入
许进进
ioc依赖倒置控制反转依赖注入java
目录一名词解释1.1依赖倒置原则(Dependencyinversionprinciple)1.2上层/底层模块1.3依赖(Dependency)二依赖倒置2.1依赖倒置前2.1依赖倒置后三控制反转(IoC)四依赖注入(Dependencyinjection)一名词解释1.1依赖倒置原则(Dependencyinversionprinciple)依赖倒置原则来源于软件设计6大设计原则,它的定义如下
- 3-2-1、k8s学习-k8s介绍
向新35°
一beaK8sGodkubernetes学习容器
1、Kubernetes(K8s)详细介绍一、Kubernetes概述Kubernetes是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。其名称源于希腊语,意为“舵手”或“飞行员”,象征着对容器化应用的精准控制。核心目标:简化微服务架构下的应用部署与管理,解决容器化应用的服务发现、负载均衡、自动扩缩容、故障恢复等问题。起源:由Google开发(基于内部Borg系统),2014年
- 量子机器学习:当量子计算遇上人工智能,颠覆即将来临?
在当今科技飞速发展的时代,量子计算与人工智能宛如两颗璀璨的星辰,各自在不同的苍穹闪耀,正以前所未有的速度重塑着世界的面貌。当这两大前沿领域相互碰撞、深度融合,量子机器学习应运而生,犹如一场科技风暴在学界与产业界悄然酝酿。这不仅让人满心期待,更引发了对未来科技格局的深刻思考:量子机器学习所承诺的颠覆,真的即将来临吗?####一、量子计算的魅力:从量子比特到量子门操作量子计算的魅力源于其对量子比特(q
- 【思考】对“私有化利润,公有化风险”现象的思考
海绵波波107
其他的思考学习
如果万达破产,谁的钱会受到影响?如果万达集团申请破产,不同相关方的资金和资产将受到不同程度的影响,具体取决于破产类型(清算或重组)、债务结构以及法律管辖。以下是主要受影响方及影响程度分析:1.债权人(最直接受影响)(1)优先债权人有抵押债权人(银行等金融机构)万达通过资产抵押获得的贷款(如商业地产抵押),债权人有权通过拍卖抵押物优先受偿。但若资产贬值,可能无法全额回收。例如:某银行持有万达广场的抵
- 深度解码:企业级 AI 选型中 Gemini 与 DeepSeek 的架构对决
charles666666
人工智能架构语言模型深度学习产品经理机器学习
开篇:技术选型会议中的认知困局当技术团队尝试评估基于MoE(专家混合)架构的Gemini1.5Pro和DeepSeek-V3时,决策者往往陷入认知混乱。尽管两者同属MoE架构,实际测试表现却大相径庭。这种混乱源于对参数规模的盲目崇拜。Gemini1.5Pro拥有1.5万亿参数,而DeepSeek-V3参数规模仅为前者的一半。但在实际企业场景测试中,DeepSeek在中文语义理解任务中的准确率却高出
- MCP协议采用客户端-服务器架构的深层逻辑与架构对比分析
一、架构选择的核心动因1.功能解耦与安全边界的强制性要求MCP采用客户端-服务器(C/S)架构的核心动因源于AI系统与真实世界交互的特殊性:权限分层控制:主机(Host)作为协调层,严格划分客户端(Client)与服务端(Server)的操作权限。例如医疗场景中,诊断模型(Client)仅能通过医院授权的主机访问脱敏病历服务器,无法直接接触原始数据。沙箱隔离需求:每个MCP服务器运行在独立容器中(
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 量子传感探针:金刚石NV色心实现细胞级磁弹性成像(分辨率10nm)技术解析
百态老人
人工智能
一、技术原理与核心突破金刚石氮-空位色心(NV色心)作为原子级量子传感器,其磁弹性成像能力源于电子自旋态与环境磁场的量子相干相互作用,结合纳米探针技术实现细胞级分辨率。核心技术原理包括:1.NV色心量子传感机制磁弹性耦合模型:NV色心的自旋哈密顿量可表示为:H=DSz2+γeB⋅S+λϵ⋅SH=DS_z^2+\gamma_e\mathbf{B}\cdot\mathbf{S}+\lambda\mat
- kafka partition分配_走近kafka-Partition分配与消息可靠性
编辑部小李
kafkapartition分配
Kafka的高可用源于其多个副本(replication)。拥有多个副本,那么带来的问题就是数据怎么同步。我们都知道数据是存放在partition物理目录下的文件里面。通过前面几节的介绍,我们也知道消息过来后直接跟partitionleader交互,然后由leader进行数据同步。由于partition的replication机制,在kafka看来partition不分leader和followe
- python爬取头条视频_Python爬虫:爬取某日头条某瓜视频,有/无水印两种方法
孤灯苦狗
python爬取头条视频
前言本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。以下文章来源于青灯编程,作者:清风Python爬虫、数据分析、网站开发等案例教程视频免费在线观看https://space.bilibili.com/523606542基本开发环境Python3.6Pycharm相关模块的使用importtimeimportosimportreimportreq
- iOS苹果和Android安卓测试APP应用程序的区别差异
iOS苹果和Android安卓在测试APP应用程序时存在显著差异,这些差异主要源于系统架构、生态规则、设备多样性等多重因素。以下是具体的区别:一、操作系统与生态iOS是苹果公司的封闭移动操作系统,而Android是谷歌开发的开放源码移动操作系统。iOS设备生态系统相对封闭,仅限于苹果自家设备,硬件和软件高度整合;Android设备生态系统则相对开放,存在多种品牌和型号,硬件和软件组合多样性大。二、
- 阿里开源WebSailor:超越闭源模型的网络智能体新星
WebSailor简介与开源背景在人工智能领域持续创新的浪潮中,阿里通义实验室于2025年7月正式开源了其突破性成果——WebSailor网络智能体。这一开源项目标志着中国企业在复杂推理与检索技术领域的重要突破,其设计初衷直指开源生态中长期存在的关键短板:面对超高不确定性任务时的系统性推理能力缺失。填补开源生态的关键空白WebSailor的诞生源于一个被长期忽视的技术鸿沟。根据斯坦福大学《2025
- 定义一个dto对象_正确理解DTO、值对象和POCO
今天推荐的文章比较技术化也比较简单,但是对于一些初学者而言,可能也是容易搞混的概念:就是如何理解DTO、值对象和POCO之间的区别。所谓DTO就是数据传输对象(DataTransferObject),POCO就是简单CLR对象(PlainOldCLRObject),概念来源于Java中的POJO;不过值对象(ValueObject)并非.NET中的值类型(ValueType)的实例对象,而是领域驱
- 洛谷-分支结构
pay4fun
刷题算法c++开发语言
洛谷–分支结构题目来源于洛谷,若有侵权,私信后立刻删除P5709【深基2.习6】ApplesPrologue/苹果和虫子题目描述小B喜欢吃苹果。她现在有mmm(1≤m≤1001\lem\le1001≤m≤100)个苹果,吃完一个苹果需要花费ttt(0≤t≤1000\let\le1000≤t≤100)分钟,吃完一个后立刻开始吃下一个。现在时间过去了sss(1≤s≤100001\les\le10000
- 粒子群算法的原理与实现示例
禺垣
人工智能算法粒子群算法群体智能优化算法
粒子群算法(ParticleSwarmOptimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出,其灵感来源于鸟群觅食、鱼群游动等自然界中群体行为的协作与信息共享机制。该算法通过模拟群体中个体(粒子)的运动和信息交互,在解空间中搜索最优解,具有实现简单、收敛速度快、参数少等特点,被广泛应用于函数优化、神经网络训练、工程设计等领域。一、算法
- 成像系统中的噪声:光子散粒噪声
YoungHong1992
计算机视觉图像信号处理
关键要点研究表明,传感器成像系统中的噪声主要来源于光子散粒噪声,这是光量子特性的结果。噪声形式为随机波动,遵循泊松分布,在图像中表现为颗粒感,尤其在低光条件下明显。证据显示,不同光照环境下的噪声表现不同,亮光条件下信号噪声比更高,相对噪声较小。噪声的产生在仅考虑光学成像、不考虑电流因素的情况下,传感器成像系统中的主要噪声来源是光子散粒噪声。这是由光的量子性质引起的,即光子到达传感器时数量的统计随机
- 【数据空间】 数据空间基本理论及公司建设方法
暴躁小师兄数据学院
数据治理大数据人工智能安全网络区块链
数据空间基本理论及公司建设方法数据空间是一种数据管理框架,旨在帮助组织高效存储、访问、集成和分析数据。它强调数据作为战略资产,通过结构化方法提升数据价值。以下我将从基本理论入手,逐步解释公司如何完成建设,确保内容结构清晰、真实可靠。一、数据空间基本理论数据空间理论源于数据管理领域,核心是解决数据孤岛、不一致性和安全风险等问题。其理论基础包括:数据抽象与建模:数据空间将数据视为独立于应用的资源,使用
- 【AI论文】Skywork-Reward-V2:通过人机协同实现偏好数据整理的规模化扩展
摘要:尽管奖励模型(RewardModels,RMs)在基于人类反馈的强化学习(ReinforcementLearningfromHumanFeedback,RLHF)中发挥着关键作用,但当前最先进的开源奖励模型在大多数现有评估基准上表现欠佳,无法捕捉人类复杂且微妙的偏好谱系。即便采用先进训练技术的方法也未能显著提升性能。我们推测,这种脆弱性主要源于偏好数据集的局限性——这些数据集往往范围狭窄、标
- 全球 AI HR 浪潮下的中国实践:从效率革命到战略重构
weixin_54980836
人工智能重构
一、全球AIHR的技术跃迁与价值重构在DeepSeek、ChatGPT引发的生成式AI革命中,人力资源管理领域正经历着从“工具替代”到“认知重构”的范式转变。Gartner《2025年人力资源技术趋势报告》指出,AI在HR场景的应用已从简历筛选、薪资计算等基础效率工具,升级为支持组织战略决策的“数字伙伴”。这种转变的底层逻辑,源于大模型技术带来的三大突破:多模态交互能力:AI已能同时处理文本、语音
- 记录一篇HTTPS的文章
麦秸垛的守望者
https网络协议http
深入理解HTTPS:从发展历程到技术原理与前端实践一、HTTPS发展历程:从安全需求到行业标准的演进HTTPS(HyperTextTransferProtocolSecure)的诞生源于互联网安全通信的迫切需求。早期的HTTP协议以明文传输数据,存在严重的安全隐患,如数据窃听、篡改和身份伪造等问题。随着电子商务、在线支付等场景的兴起,保障数据传输安全成为亟待解决的问题。1994年:网景公司(Net
- Python学习打卡:day09
胜天半子祁厅
Pythonpython学习开发语言
day9笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了目录day964、字典课后习题65、5类数据容器的总结对比数据容器分类数据容器特点对比66、数据容器的通用操作遍历统计len、max和min转换list(容器)、tuple(容器)、str(容器)、set(容器)排序容器通用功能总览67、拓展——字符串的大小比较ASCII码表字符串比较68、函数
- Python学习打卡:day02
day2笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了目录day28、字符串的三种定义方式字符串在Python中有多种定义形式字符串的引号嵌套9、字符串的拼接10、字符串格式化11、格式化的精度控制12、字符串格式化的方式213、对表达式进行格式化14、字符串格式化的课后练习题15、数据输入(input语句)input语句(函数)input语句获取
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。