transformation操作

  • map()
  • filter()
  • flatMap()
  • groupByKey()
  • reduceByKey()
  • sortByKey()
  • join()
  • cogroup()
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

/**
 * transformation操作实战
 * @author Administrator
 *
 */
@SuppressWarnings(value = {"unused", "unchecked"})
public class TransformationOperation {

    public static void main(String[] args) {
        // map();
        // filter();
        // flatMap();
        // groupByKey();
        // reduceByKey();
        // sortByKey();
        // join();
        cogroup();
    }
    
    /**
     * map算子案例:将集合中每一个元素都乘以2
     */
    private static void map() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("map")
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
    
        // 构造集合
        List numbers = Arrays.asList(1, 2, 3, 4, 5);
        
        // 并行化集合,创建初始RDD
        JavaRDD numberRDD = sc.parallelize(numbers);
        
        // 使用map算子,将集合中的每个元素都乘以2
        // map算子,是对任何类型的RDD,都可以调用的
        // 在java中,map算子接收的参数是Function对象
        // 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
            // 同时call()方法的返回类型,也必须与第二个泛型类型同步
        // 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
        // 所有新的元素就会组成一个新的RDD
        JavaRDD multipleNumberRDD = numberRDD.map(
                
                new Function() {

                    private static final long serialVersionUID = 1L;
                    
                    // 传入call()方法的,就是1,2,3,4,5
                    // 返回的就是2,4,6,8,10
                    @Override
                    public Integer call(Integer v1) throws Exception {
                        return v1 * 2;
                    }
                    
                });
        
        // 打印新的RDD
        multipleNumberRDD.foreach(new VoidFunction() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);  
            }
            
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * filter算子案例:过滤集合中的偶数
     */
    private static void filter() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("filter")
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        
        // 并行化集合,创建初始RDD
        JavaRDD numberRDD = sc.parallelize(numbers);
        
        // 对初始RDD执行filter算子,过滤出其中的偶数
        // filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
        // 但是,唯一的不同,就是call()方法的返回类型是Boolean
        // 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
        // 来判断这个元素是否是你想要的
        // 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
        JavaRDD evenNumberRDD = numberRDD.filter(
                
                new Function() {

                    private static final long serialVersionUID = 1L;
                    
                    // 在这里,1到10,都会传入进来
                    // 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
                    // 所以,只有偶数会保留下来,放在新的RDD中
                    @Override
                    public Boolean call(Integer v1) throws Exception {
                        return v1 % 2 == 0; // 注意返回的是Boolean
                    }
                    
                });
        
        // 打印新的RDD
        evenNumberRDD.foreach(new VoidFunction() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);
            }
            
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * flatMap案例:将文本行拆分为多个单词
     */
    private static void flatMap() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("flatMap")  
                .setMaster("local");  
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 构造集合
        List lineList = Arrays.asList("hello you", "hello me", "hello world");  
        
        // 并行化集合,创建RDD
        JavaRDD lines = sc.parallelize(lineList);
        
        // 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
        // flatMap算子,在java中,接收的参数是FlatMapFunction
        // 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
        // call()方法,返回的类型,不是U,而是Iterable,这里的U也与第二个泛型类型相同
        // flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
        // 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
        // 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
        JavaRDD words = lines.flatMap(new FlatMapFunction() {

            private static final long serialVersionUID = 1L;
            
            // 在这里会,比如,传入第一行,hello you
            // 返回的是一个Iterable(hello, you)
            @Override
            public Iterable call(String t) throws Exception {
                return Arrays.asList(t.split(" "));
            }
            
        });
        
        // 打印新的RDD
        words.foreach(new VoidFunction() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(String t) throws Exception {
                System.out.println(t);
            }
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * groupByKey案例:按照班级对成绩进行分组
     */
    private static void groupByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("groupByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List> scoreList = Arrays.asList(
                new Tuple2("class1", 80),
                new Tuple2("class2", 75),
                new Tuple2("class1", 90),
                new Tuple2("class2", 65));
        
        // 并行化集合,创建JavaPairRDD
        JavaPairRDD scores = sc.parallelizePairs(scoreList);
        
        // 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
        // groupByKey算子,返回的还是JavaPairRDD
        // 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
        // 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
        // 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
        JavaPairRDD> groupedScores = scores.groupByKey();
        
        // 打印groupedScores RDD
        groupedScores.foreach(new VoidFunction>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2> t)
                    throws Exception {
                System.out.println("class: " + t._1);  
                Iterator ite = t._2.iterator();
                while(ite.hasNext()) {
                    System.out.println(ite.next());  
                }
                System.out.println("==============================");   
            }
            
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * reduceByKey案例:统计每个班级的总分
     */
    private static void reduceByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("reduceByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List> scoreList = Arrays.asList(
                new Tuple2("class1", 80),
                new Tuple2("class2", 75),
                new Tuple2("class1", 90),
                new Tuple2("class2", 65));
        
        // 并行化集合,创建JavaPairRDD
        JavaPairRDD scores = sc.parallelizePairs(scoreList);
        
        // 针对scores RDD,执行reduceByKey算子
        // reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值
        // 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
            // 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将值再与第三个value传入
            // 因此此处,会自动定义两个泛型类型,代表call()方法的两个传入参数的类型
        // 第三个泛型类型,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
        // reduceByKey算法返回的RDD,还是JavaPairRDD
        JavaPairRDD totalScores = scores.reduceByKey(
                
                new Function2() {
                    
                    private static final long serialVersionUID = 1L;
                    
                    // 对每个key,都会将其value,依次传入call方法
                    // 从而聚合出每个key对应的一个value
                    // 然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
                    @Override
                    public Integer call(Integer v1, Integer v2) throws Exception {
                        return v1 + v2;
                    }
                    
                });
        
        // 打印totalScores RDD
        totalScores.foreach(new VoidFunction>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2 t) throws Exception {
                System.out.println(t._1 + ": " + t._2);   
            }
            
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * sortByKey案例:按照学生分数进行排序
     */
    private static void sortByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("sortByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List> scoreList = Arrays.asList(
                new Tuple2(65, "leo"),
                new Tuple2(50, "tom"),
                new Tuple2(100, "marry"),
                new Tuple2(80, "jack"));
        
        // 并行化集合,创建RDD
        JavaPairRDD scores = sc.parallelizePairs(scoreList);
        
        // 对scores RDD执行sortByKey算子
        // sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
        // 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
        // 但是就是RDD中的元素的顺序,不同了
        JavaPairRDD sortedScores = scores.sortByKey(false);  
        
        // 打印sortedScored RDD
        sortedScores.foreach(new VoidFunction>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2 t) throws Exception {
                System.out.println(t._1 + ": " + t._2);  
            }
            
        });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * join案例:打印学生成绩
     */
    private static void join() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("join")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List> studentList = Arrays.asList(
                new Tuple2(1, "leo"),
                new Tuple2(2, "jack"),
                new Tuple2(3, "tom"));
        
        List> scoreList = Arrays.asList(
                new Tuple2(1, 100),
                new Tuple2(2, 90),
                new Tuple2(3, 60));
        
        // 并行化两个RDD
        JavaPairRDD students = sc.parallelizePairs(studentList);
        JavaPairRDD scores = sc.parallelizePairs(scoreList);
        
        // 使用join算子关联两个RDD
        // join以后,还是会根据key进行join,并返回JavaPairRDD
        // 但是JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key的类型,因为是通过key进行join的
        // 第二个泛型类型,是Tuple2的类型,Tuple2的两个泛型分别为原始RDD的value的类型
        // join,就返回的RDD的每一个元素,就是通过key join上的一个pair
        // 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
            // 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
            // join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
        JavaPairRDD> studentScores = students.join(scores);
        
        // 打印studnetScores RDD
        studentScores.foreach(
                
                new VoidFunction>>() {

                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public void call(Tuple2> t)
                            throws Exception {
                        System.out.println("student id: " + t._1);  
                        System.out.println("student name: " + t._2._1);  
                        System.out.println("student score: " + t._2._2);
                        System.out.println("===============================");   
                    }
                    
                });
        
        // 关闭JavaSparkContext
        sc.close();
    }
    
    /**
     * cogroup案例:打印学生成绩
     */
    private static void cogroup() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("cogroup")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List> studentList = Arrays.asList(
                new Tuple2(1, "leo"),
                new Tuple2(2, "jack"),
                new Tuple2(3, "tom"));
        
        List> scoreList = Arrays.asList(
                new Tuple2(1, 100),
                new Tuple2(2, 90),
                new Tuple2(3, 60),
                new Tuple2(1, 70),
                new Tuple2(2, 80),
                new Tuple2(3, 50));
        
        // 并行化两个RDD
        JavaPairRDD students = sc.parallelizePairs(studentList);
        JavaPairRDD scores = sc.parallelizePairs(scoreList);
        
        // cogroup与join不同
        // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了 
        // cogroup,不太好讲解,希望大家通过动手编写我们的案例,仔细体会其中的奥妙
        JavaPairRDD, Iterable>> studentScores = 
                students.cogroup(scores);
        
        // 打印studnetScores RDD
        studentScores.foreach(
                
                new VoidFunction,Iterable>>>() {

                    private static final long serialVersionUID = 1L;
        
                    @Override
                    public void call(
                            Tuple2, Iterable>> t)
                            throws Exception {
                        System.out.println("student id: " + t._1);  
                        System.out.println("student name: " + t._2._1);  
                        System.out.println("student score: " + t._2._2);
                        // student id: 1
                        // student name: [leo]
                        // student score: [100, 70]  
                        System.out.println("===============================");   
                    }
                    
                });
        
        // 关闭JavaSparkContext
        sc.close();
    }
}
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object TransformationOperation {
  
  def main(args: Array[String]) {
    // map()  
    // filter()  
    // flatMap()  
    // groupByKey() 
    // reduceByKey()  
    // sortByKey() 
    join()  
  }
  
  def map() {
    val conf = new SparkConf()
        .setAppName("map")
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
    val numbers = Array(1, 2, 3, 4, 5)
    val numberRDD = sc.parallelize(numbers, 1)  
    val multipleNumberRDD = numberRDD.map { num => num * 2 }  
    
    multipleNumberRDD.foreach { num => println(num) }   
  }
  
  def filter() {
    val conf = new SparkConf()
        .setAppName("filter")
        .setMaster("local")
    val sc = new SparkContext(conf)
    
    val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numberRDD = sc.parallelize(numbers, 1)
    val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 }
    
    evenNumberRDD.foreach { num => println(num) }   
  }
  
  def flatMap() {
    val conf = new SparkConf()
        .setAppName("flatMap")  
        .setMaster("local")  
    val sc = new SparkContext(conf) 
    
    val lineArray = Array("hello you", "hello me", "hello world")  
    val lines = sc.parallelize(lineArray, 1)
    val words = lines.flatMap { line => line.split(" ") }   
      
    words.foreach { word => println(word) }
  }
  
  def groupByKey() {
    val conf = new SparkConf()
        .setAppName("groupByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)  
    val groupedScores = scores.groupByKey() 
    
    groupedScores.foreach(score => { 
      println(score._1); 
      score._2.foreach { singleScore => println(singleScore) };
      println("=============================")  
    })
  }
  
  def reduceByKey() {
    val conf = new SparkConf()
        .setAppName("groupByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)  
    val totalScores = scores.reduceByKey(_ + _)  
    
    totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2))  
  }
  
  def sortByKey() {
    val conf = new SparkConf()
        .setAppName("sortByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
    val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), 
        Tuple2(100, "marry"), Tuple2(85, "jack"))  
    val scores = sc.parallelize(scoreList, 1)  
    val sortedScores = scores.sortByKey(false)
    
    sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore._2))  
  }
  
  def join() {
    val conf = new SparkConf()
        .setAppName("join")  
        .setMaster("local")  
    val sc = new SparkContext(conf)
    
   val studentList = Array(
        Tuple2(1, "leo"),
        Tuple2(2, "jack"),
        Tuple2(3, "tom"));
    
   val scoreList = Array(
        Tuple2(1, 100),
        Tuple2(2, 90),
        Tuple2(3, 60));
    
    val students = sc.parallelize(studentList);
    val scores = sc.parallelize(scoreList);
    
    val studentScores = students.join(scores)  
    
    studentScores.foreach(studentScore => { 
      println("student id: " + studentScore._1);
      println("student name: " + studentScore._2._1)
      println("student socre: " + studentScore._2._2)  
      println("=======================================")  
    })  
  }
  
  def cogroup() {
    
  }
  
}

你可能感兴趣的:(transformation操作)