特征选择II:多模型自动化选择

from sklearn.datasets import load_boston
from sklearn.linear_model import (LinearRegression, Ridge, 
                                  Lasso, RandomizedLasso)
from sklearn.feature_selection import RFE, f_regression
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
import numpy as np
from minepy import MINE
 
np.random.seed(0)
 
size = 750
X = np.random.uniform(0, 1, (size, 14))
 
#"Friedamn #1” regression problem
Y = (10 * np.sin(np.pi*X[:,0]*X[:,1]) + 20*(X[:,2] - .5)**2 +
     10*X[:,3] + 5*X[:,4] + np.random.normal(0,1))
#Add 3 additional correlated variables (correlated with X1-X3)
X[:,10:] = X[:,:4] + np.random.normal(0, .025, (size,4))
 
names = ["x%s" % i for i in range(1,15)]
 
ranks = {}
 
def rank_to_dict(ranks, names, order=1):
    minmax = MinMaxScaler()
    ranks = minmax.fit_transform(order*np.array([ranks]).T).T[0]
    ranks = map(lambda x: round(x, 2), ranks)
    return dict(zip(names, ranks ))
 
lr = LinearRegression(normalize=True)
lr.fit(X, Y)
ranks["Linear reg"] = rank_to_dict(np.abs(lr.coef_), names)
 
ridge = Ridge(alpha=7)
ridge.fit(X, Y)
ranks["Ridge"] = rank_to_dict(np.abs(ridge.coef_), names)
 
 
lasso = Lasso(alpha=.05)
lasso.fit(X, Y)
ranks["Lasso"] = rank_to_dict(np.abs(lasso.coef_), names)
 
 
rlasso = RandomizedLasso(alpha=0.04)
rlasso.fit(X, Y)
ranks["Stability"] = rank_to_dict(np.abs(rlasso.scores_), names)
 
#stop the search when 5 features are left (they will get equal scores)
rfe = RFE(lr, n_features_to_select=5)
rfe.fit(X,Y)
ranks["RFE"] = rank_to_dict(map(float, rfe.ranking_), names, order=-1)
 
rf = RandomForestRegressor()
rf.fit(X,Y)
ranks["RF"] = rank_to_dict(rf.feature_importances_, names)
 
 
f, pval  = f_regression(X, Y, center=True)
ranks["Corr."] = rank_to_dict(f, names)
 
mine = MINE()
mic_scores = []
for i in range(X.shape[1]):
    mine.compute_score(X[:,i], Y)
    m = mine.mic()
    mic_scores.append(m)
 
ranks["MIC"] = rank_to_dict(mic_scores, names) 
 
 
r = {}
for name in names:
    r[name] = round(np.mean([ranks[method][name] 
                             for method in ranks.keys()]), 2)
 
methods = sorted(ranks.keys())
ranks["Mean"] = r
methods.append("Mean")
 
print "\t%s" % "\t".join(methods)
for name in names:
    print "%s\t%s" % (name, "\t".join(map(str, 
                         [ranks[method][name] for method in methods])))

你可能感兴趣的:(特征选择II:多模型自动化选择)