[物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减

在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$\bex \cfrac{\p \rho}{\p t}+\cfrac{\sigma}{\ve_0}\rho=0.  \eex$$ 由此证明导体内的任何电荷分布均随时间的增加而指数地衰减到零.

 

证明: 由 $$\bex 0=\cfrac{\p\rho}{\p t}+\Div{\bf j} =\cfrac{\p\rho}{\p t}+\Div(\sigma{\bf E}) =\cfrac{\p \rho}{\p t}+\sigma \Div{\bf E} =\cfrac{\p\rho}{\p t}+\cfrac{\sigma}{\ve_0}\rho \eex$$ 知 $$\bex \rho=\rho_0e^{-\frac{\sigma}{\ve_0}t}. \eex$$

 

你可能感兴趣的:(des)