深入理解java虚拟机(六)-虚拟机类加载机制

本文基于周志明的《深入理解java虚拟机 JVM高级特性与最佳实践》所写。特此推荐。

类加载的时机

类的生命周期包括了:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(using)、和卸载(Unloading)七个阶段。其中验证、准备和解析三个部分统称为连接(Linking),这七个阶段的发生顺序如下图所示:

深入理解java虚拟机(六)-虚拟机类加载机制_第1张图片
类加载生命周期

如上图所示,加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类的加载过程必须按照这个顺序来按部就班地开始,而解析阶段则不一定,它在某些情况下可以在初始化阶段后再开始。类的生命周期的每一个阶段通常都是互相交叉混合式进行的,通常会在一个阶段执行的过程中调用或激活另外一个阶段。

虚拟机规范严格规定了有且只有5种情况必需立即对类进行“初始化”(而加载、验证、准备阶段则必需在此之前开始):

  1. 遇到new、getstatic、putstatic或invokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令最常见的Java代码场景是:使用new关键字实例化对象时、读取或者设置一个类的静态字段(被final修饰、已在编译器把结果放入常量池的静态字段除外)时、以及调用一个类的静态方法的时候。
  2. 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
  3. 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要触发父类的初始化。
  4. 当虚拟机启动时,用户需要指定一个执行的主类(包含main()方法的类),虚拟机会先初始化这个类。
  5. 当使用JDK1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发气初始化。

类加载的过程

全过程:加载、验证、准备、解析、初始化。

加载

在加载阶段,虚拟机需要完成以下三件事情:

  1. 通过一个类的权限定名称来获取定义此类的二进制字节流。
  2. 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
  3. 在java堆中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

相对于类加载过程的其他阶段,一个非数组类加载阶段是开发人员可控性最强的,该阶段既可以使用系统提供的类加载器完成,也可以由用户自定义的类加载器来完成,开发人员可以通过定义自己的类加载器去控制字节流的获取方式。
对于数组类而言,数组类本身不通过类加载器创建,由java虚拟机直接创建的。

验证

这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
不同的虚拟机对类验证的实现可能会有所不同,但大致上都会完成下面四个阶段的检验过程:文件格式验证、元数据验证、字节码验证和符号引用验证。

  1. 文件格式验证:该阶段主要是验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。
  2. 元数据验证:这一阶段主要是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求。
  3. 字节码验证:主要工作是通过数据流和控制流分析,确定语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型做完校验后,这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。
  4. 符号引用验证:主要是在虚拟机将符号引用转化为直接引用的时候进行校验,这个转化动作是发生在解析阶段。符号引用可以看做是对类自身以外(常量池的各种符号引用)的信息进行匹配性的校验。

准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中进行分配。这个时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起被分配在Java堆中。这里所说的初始值“通常情况”下是数据类型的零值。

解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。

  • 符号引用(Symbolic Reference):符号引用以一组符号来描述所引用的目标,符号引用可以是任何形式的字面量,符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经在内存中。
  • 直接引用(Direct Reference):直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是与虚拟机实现的内存布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般都不相同,如果有了直接引用,那引用的目标必定已经在内存中存在。

对于同一个符号引用可能会出现多次解析,虚拟机可能会对第一次解析的结果进行缓存。 解析动作分为四类:包括类或接口的解析、字段解析、类方法解析、接口方法解析。

初始化

类初始化阶段是类加载过程的最后一步,前面的类加载过程中,除了加载(Loading)阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码。初始化阶段是执行类构造器()方法的过程。以下是它的生成步骤:

  1. ()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序由语句在源文件中出现的顺序所决定。
  2. ()方法与类的构造函数不同,它不需要显式地调用父类构造器,虚拟机会保证在子类的()方法执行之前,父类的()方法已经执行完毕,因此在虚拟机中第一个执行的()方法的类一定是java.lang.Object。
  3. 由于父类的()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。
  4. ()方法对于类或者接口来说并不是必需的,如果一个类中没有静态语句块也没有对变量的赋值操作,那么编译器可以不为这个类生成()方法。
  5. 接口中可能会有变量赋值操作,因此接口也会生成()方法。但是接口与类不同,执行接口的()方法不需要先执行父接口的()方法。只有当父接口中定义的变量被使用时,父接口才会被初始化。另外,接口的实现类在初始化时也不会执行接口的()方法。
  6. 虚拟机会保证一个类的()方法在多线程环境中被正确地加锁和同步。如果有多个线程去同时初始化一个类,那么只会有一个线程去执行这个类的()方法,其它线程都需要阻塞等待,直到活动线程执行()方法完毕。如果在一个类的()方法中有耗时很长的操作,那么就可能造成多个进程阻塞。

类加载器

在类加载阶段,有一步是“通过类的全限定名来获取描述此类的二进制字节流”,而所谓的类加载器就是实现这个功能的一个代码模块,这个动作是在Java虚拟机外部实现的,这样做可以让应用程序自己决定如何去获取所需要的类。
对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在Java虚拟机中唯一性,每一个类加载器,都拥有一个独立的类名称空间。通俗的讲:比较两个类是否“相等”,只有这两个类是由同一个类加载器加载才有意义。

双亲委派模型

从虚拟机的角度来说,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),该类加载器使用C++语言实现,属于虚拟机自身的一部分。另外一种就是所有其它的类加载器,这些类加载器是由Java语言实现,独立于JVM外部,并且全部继承自抽象类java.lang.ClassLoader。
从Java开发人员的角度来看,大部分Java程序一般会使用到以下三种系统提供的类加载器:

  1. 启动类加载器(Bootstrap ClassLoader):负责加载JAVA_HOME\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且能被虚拟机识别的类库加载到JVM内存中,如果名称不符合的类库即使放在lib目录中也不会被加载。该类加载器无法被Java程序直接引用。用户编写自定义加载器时,如果需要把加载请求委派给引导类加载器,直接使用null即可。
  2. 扩展类加载器(Extension ClassLoader):该加载器主要是负责加载JAVA_HOME\lib\ext目录中的,或者被java.ext.dirs系统变量所指定的路径中的所有类库。该加载器可以被开发者直接使用。
  3. 应用程序类加载器(Application ClassLoader):该类加载器也称为系统类加载器,它负责加载用户类路径(Classpath)上所指定的类库,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

我们的应用程序都是由这三类加载器互相配合进行加载的,我们也可以加入自己定义的类加载器。这些类加载器之间的关系如下图所示:

深入理解java虚拟机(六)-虚拟机类加载机制_第2张图片
双亲委派模型

如上图所示的类加载器之间的这种层次关系,就称为类加载器的双亲委派模型(Parent Delegation Model)。该模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。子类加载器和父类加载器不是以继承(Inheritance)的关系来实现,而是通过组合(Composition)关系来复用父加载器的代码。

双亲委派模型的工作过程为:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的加载器都是如此,因此所有的类加载请求都会传给顶层的启动类加载器,只有当父加载器反馈自己无法完成该加载请求(该加载器的搜索范围中没有找到对应的类)时,子加载器才会尝试自己去加载。

你可能感兴趣的:(深入理解java虚拟机(六)-虚拟机类加载机制)