分布式存储系统的分容灾块数据分布算法优化及测试

上一篇文章给出了一个基本的分布算法,虽然可以求出结果最优的分布,但是还存在一个严重缺陷:没有考虑数据原来的分布情况。

当集群新加入一批机器或者有机器故障的时候,数据要重新分布,如果使用前文算法,由于没有考虑数据原来的分布情况,即使是集群发生微小的变动,也会导致所有数据的位置改变,这显然是不可接受的。所以分布算法应该在结果最优的情况下,使得数据位置的变动尽量少。

我优化的思路是:尽量让桶留在原来的机器上。为此,我对原来的模型做了一些改变:
增加一组节点,每台机器对应其中一个节点,把原来的机器节点叫A类机器节点,新增加的这组节点叫做B类机器节点。
B类每个节点向A类对应的节点连一条不限流量、费用为-0.0001的边。
B类每个节点向机器所在的容灾块连一条不限流量、费用为0的边。
如果目前一个桶b在机器h上有一个副本,机器属于容灾块d,那么前文模型中原本应该从b连到d的边改为从b连到B类h节点。

经过上述修改后,流会尽量选择有负费用的道路,根据求出的最小费用最大流,就会对应一个副本位置尽量不变的最优分布方案。

分布式存储系统的分容灾块数据分布算法优化及测试_第1张图片
Paste_Image.png

上图中,桶b1在机器h1上有一个副本,所以b1到h1有一条边,b1到d1的没有了。同理,b2在h2有一个副本,b3在h6有一个副本。

加了这个优化,本算法就基本可以满足实际需要了。

算法复杂度

有n个桶,每个桶有m份副本,有s台机器
那么所建的图共有nm+2s个点(容灾块较少,可忽略)
需要对这个图做nm次增广,故理论复杂度为O(nm(nm+2*s)^2)
但由于图的结构特殊,性能还有进一步优化的空间,这就要看实际情况了。

代码

先是公用的头文件

#include
struct ScheduleTable
{
    //分布表,一行表示一个桶的分布,每列上的值代表这个桶的一个副本所在的机器
    //第0列表示这个桶主副本所在的机器,机器编号全部大于0,表中的0表示该副本不在任何机器上。
    ScheduleTable(unsigned int row, unsigned int col)
    {
        this->row = row;
        this->col = col;
        this->arr = static_cast(calloc(row * col, sizeof(unsigned int)));
    }

    ScheduleTable(const ScheduleTable& table)
    {
        this->row = table.row;
        this->col = table.col;
        this->arr = static_cast(calloc(row * col, sizeof(unsigned int)));
        memmove(this->arr, table.arr, row * col * sizeof(unsigned int));
    }

    ~ScheduleTable()
    {
        free(arr);
    }

    unsigned int* operator [](unsigned int index) const
    {
        return arr + index * col;
    }

    unsigned int get_row()
    {
        return row;
    }

    unsigned int get_col()
    {
        return col;
    }

    unsigned int* arr;

private:
    unsigned int row, col;
};

//机器信息
struct DataNodeInfo
{
    unsigned int id;//机器编号
    unsigned int groupid;//容灾块编号
};

接着算法代码代码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "schedule_table.h"
using namespace std;

struct Edge
{
    unsigned int y;
    int flow, cap;
    double cost;
    Edge(unsigned int y, int flow, int cap, double cost) : y(y), flow(flow), cap(cap), cost(cost) {}

    double get_cost()
    {
        if (fabs(cost) < 1e-5)
            return cost;
        return (flow+1)*(flow+1) - flow*flow;
    }
};

struct Graph
{
    unsigned int n, t;
    vector edges;
    vector > list;

    Graph(unsigned int n, unsigned int t) : n(n), t(t)
    {
        list = vector >(n, vector());
    }

    void link(unsigned int x, unsigned int y, int cap, double cost);
    void augment(unsigned int s);
};

void Graph::link(unsigned int x, unsigned int y, int cap, double cost)
{
    edges.push_back(Edge(y, 0, cap, cost));
    list[x].push_back(edges.size() - 1);
    edges.push_back(Edge(x, 0, 0, -cost));
    list[y].push_back(edges.size() - 1);
}

void Graph::augment(unsigned int s)
{
    struct Node
    {
        unsigned int pre;
        double cost;
        bool vist;

        Node() : cost(1e50), vist(false) {}
    };
    queue q;
    vector nodes;
    unsigned int x, y;
    q.push(s);
    nodes = vector(n);
    nodes[s].cost = 0;
    nodes[s].vist = true;

    while(!q.empty()) //spfa
    {
        x = q.front();
        q.pop();
        nodes[x].vist = false;
        vector::iterator it;
        for (it = list[x].begin(); it != list[x].end(); it++)
        {
            Edge &e = edges[*it];
            y = e.y;
            if (e.cap > e.flow && nodes[y].cost > nodes[x].cost + e.get_cost() + 1e-10)
            {
                nodes[y].cost = nodes[x].cost + e.get_cost();
                nodes[y].pre = *it;
                if (!nodes[y].vist)
                {
                    nodes[y].vist = true;
                    q.push(y);
                }
            }
        }
    }
    y = t;
    while (y != s)
    {
        edges[nodes[y].pre].flow++;
        edges[nodes[y].pre^1].flow--;
        y = edges[nodes[y].pre^1].y;
    }
}

int select_master(ScheduleTable &table, const vector &nodes, ScheduleTable* old_table = NULL)
{
    const unsigned int ROW = table.get_row();
    const unsigned int COL = table.get_col();
    map pos;

    for (unsigned int i = 0; i < nodes.size(); i++)
        pos[nodes[i].id] = i;

    unsigned int t = ROW + nodes.size();
    Graph g(t + 1, t);

    for (unsigned int i = 0; i < ROW; i++)
        for (unsigned int j = 0; j < COL; j++)
            if (table[i][j])
            {
                if (old_table && (*old_table)[i][0] == table[i][j] || old_table == NULL && j == 0 && table[i][j])
                    g.link(i, ROW + pos[table[i][j]], 1, -1e-6);
                else
                    g.link(i, ROW + pos[table[i][j]], 1, 0.0);
            }
    for (unsigned int i = 0; i < nodes.size(); i++)
        g.link(ROW + i, t, 1<<30, 1.0);

    for (unsigned int i = 0; i < ROW; i++)
        g.augment(i);

    for (unsigned int i = 0; i < ROW; i++)
        for (auto it : g.list[i])
        {
            Edge &e = g.edges[it];
            if (e.flow == 1)
            {
                unsigned int m = nodes[e.y - ROW].id;
                for (unsigned int j = 0; j < COL; j++)
                    if (table[i][j] == m)
                    {
                        swap(table[i][0], table[i][j]);
                        break;
                    }
            }
        }
    return 0;
}

int fix_and_balance(ScheduleTable &table, const vector &nodes)
{
    const unsigned int ROW = table.get_row();
    const unsigned int COL = table.get_col();
    map > group_node;
    map > group_bucket, node_bucket;
    map node_group;
    vector groups;
    map pos;

    ScheduleTable old_table(table);

    for (unsigned int i = 0; i < nodes.size(); i++)
        pos[nodes[i].id] = i;

    for (auto node : nodes)
    {
        if (group_node.find(node.groupid) == group_node.end())
        {
            group_node[node.groupid] = vector();
            group_bucket[node.groupid] = vector();
        }
        group_node[node.groupid].push_back(node.id);
        node_group[node.id] = node.groupid;
        node_bucket[node.id] = vector();
    }

    for (auto it : group_node)
        groups.push_back(it.first);

    unsigned int ds1 = ROW + groups.size();//B类节点的起始下标
    unsigned int ds2 = ds1 + nodes.size();//A类节点的起始下标
    unsigned int t = ds2 + nodes.size();

    Graph g(t + 1, t);

    for (unsigned int i = 0; i < ROW; i++)
    {
        //桶连向无关的容灾块
        for (unsigned int j = 0; j < groups.size(); j++)
        {
            unsigned int k;
            for (k = 0; k < COL; k++)
                if (table[i][k] && node_group[table[i][k]] == groups[j])
                    break;
            if (k == COL)
                g.link(i, ROW + j, 1, 0.0);
        }

        //桶连向相关的B类节点
        for (unsigned int j = 0; j < COL; j++)
            if (table[i][j])
            {
                unsigned int k;
                //这里兼容了原来没有容灾块概念的分布
                for (k = 0; k < j; k++)
                    if (table[i][k] && node_group[table[i][k]] == node_group[table[i][j]])
                        break;
                if (k < j)
                    continue;
                if (j == 0)//主副本尽量不迁移,前文没有讲这个优化,不加也影响不大
                    g.link(i, ds1 + pos[table[i][j]], 1, -1e-6);
                else
                    g.link(i, ds1 + pos[table[i][j]], 1, 0.0);
            }
    }
    for (unsigned int i = 0; i < groups.size(); i++)
        for (auto node : group_node[groups[i]])
        {
            g.link(ds1 + pos[node], ROW + i, 1<<30, 0);//B类节点连向所在容灾块
            g.link(ROW + i, ds2 + pos[node], 1<<30, 0);//容灾块连向包含的A类节点
        }

    //B类节点连向A类节点
    for (unsigned int i = 0; i < nodes.size(); i++)
        g.link(ds1 + i, ds2 + i, 1<<30, -1e-6);

    //A类节点连向汇
    for (unsigned int i = 0; i < nodes.size(); i++)
        g.link(ds2 + i, t, 1<<30, 1);

    //由于图比较特殊,源出来的每条边都会有流,所以我做了个性能优化,去掉了源,直接从每个桶为源做m次增广
    for (unsigned int i = 0; i < ROW; i++)
        for (unsigned int j = 0; j < COL; j++)
            g.augment(i);

    //根据最小费用最大流结果构造新的分布表
    for (unsigned int i = 0; i < ROW; i++)
    {
        unsigned int k = 0;
        for (auto it : g.list[i])
            if (g.edges[it].flow > 0)
            {
                int x;
                Edge* e = &(g.edges[it]);
                while (e->y != t)
                {
                    vector edges;
                    x = e->y;
                    for (auto jt : g.list[e->y])
                        if (g.edges[jt].flow > 0)
                            edges.push_back(&(g.edges[jt]));
                    int r = rand() % edges.size();//避免出现雷同的机器
                    e = edges[r];
                    e->flow--;
                }
                table[i][k++] = nodes[x - ds2].id;
            }
        if (k != COL)
            return 1;
    }

    //选主副本
    select_master(table, nodes, &old_table);

    return 0;
}

测试

用gtest做了几个单元测试

#include 
#include 
#include "gtest/gtest.h"
#include "schedule_table.h"
using namespace std;

class ScheduleTest: public testing::Test
{
public:
    static const int ROW = 1024;//桶个数
    static const int COL = 3;//副本数
    static const int NODES = 1024;//机器编号范围[1, NODES - 1]
    static unsigned int nodes[NODES];//nodes[i]不为0表示存在编号为i的机器,nodes[i]为机器的groupid
    static unsigned int nodes_count;
    static ScheduleTable table;

    static void SetUpTestCase()
    {
    }

    virtual void SetUp()
    {
    }
    virtual void TearDown()
    {
    }

    static void del_node(unsigned int num, unsigned int group_id);
    static void add_node(unsigned int num, unsigned int group_id);
    static void get_node(vector &vec);
    static int check(bool print_state);
    static int check_zero();
    static void print_state();
    static void check_diff(ScheduleTable &t1, ScheduleTable &t2);
};

unsigned int ScheduleTest::nodes[NODES];
unsigned int ScheduleTest::nodes_count;
ScheduleTable ScheduleTest::table(ROW, COL);

extern int select_master(ScheduleTable &table, const vector &nodes, ScheduleTable* old_table = NULL);
extern int fix_and_balance(ScheduleTable &table, const vector &nodes);

void ScheduleTest::del_node(unsigned int num, unsigned int group_id)
{
    int i, j, m, n, st;
    for (i = 0; nodes_count && i < num; i++)
    {
        st = rand() % nodes_count;
        for (j = 1; j < NODES; j++)
            if (nodes[j])
            {
                if (st == 0)
                    break;
                --st;
            }
        while (nodes[j] != group_id)
            j = (j + 1) % NODES;

        for (m = 0; m < ROW; m++)
            for (n = 0; n < COL; n++)
            {
                if (table[m][n] == j)
                    table[m][n] = 0;
            }
        nodes[j] = 0;
        nodes_count--;
    }
}

void ScheduleTest::add_node(unsigned int num, unsigned int group_id)
{
    for (int i = 1; num && i < NODES; i++)
        if (nodes[i] == 0)
        {
            nodes[i] = group_id;
            num--;
            nodes_count++;
        }
}

void ScheduleTest::get_node(vector &vec)
{
    vec.clear();
    for (unsigned int i = 1; i < NODES; i++)
        if (nodes[i])
            vec.push_back((DataNodeInfo){i, nodes[i]});
}

void ScheduleTest::check_diff(ScheduleTable &t1, ScheduleTable &t2)
{
    unsigned int mdiff = 0;
    unsigned int diff = 0;
    for (unsigned int i = 0; i < ROW; i++)
    {
        if (t1[i][0] != t2[i][0])
            mdiff++;
        for (unsigned int j = 0; j < t1.get_col(); j++)
        {
            unsigned int k;
            for (k = 0; k < t2.get_col(); k++)
                if (t1[i][j] == t2[i][k])
                    break;
            if (k == t2.get_col())
                diff++;
        }
    }

    printf("%d master will change\n%d buckets will change or add\n", mdiff, diff);
}

int ScheduleTest::check_zero()
{
    for (unsigned int i = 0; i < ROW; i++)
        for (unsigned int j = 1; j < COL; j++)
            if (table[i][j] == 0)
                return 1;
    return 0;
}

int ScheduleTest::check(bool print_state = false)
{
    unsigned int s[NODES], m[NODES];
    memset(s, 0, sizeof(s));
    memset(m, 0, sizeof(m));

    for (unsigned int i = 0; i < ROW; i++)
    {
        m[table[i][0]]++;
        for (unsigned int j = 0; j < COL; j++)
        {
            for (unsigned int k = j + 1; k < COL; k++)
                if (nodes[table[i][j]] == nodes[table[i][k]])
                    return 1;
            s[table[i][j]]++;
        }
    }
    //统计每台机器的主副本数和副本数
    if (print_state)
        for (unsigned int i = 0; i < NODES; i++)
            if (nodes[i])
                printf("%d/%d: %d %d\n", nodes[i], i, m[i], s[i]);// 容灾块编号/机器编号: 主副本数 副本数
    return 0;
}

//初始化集群
TEST_F(ScheduleTest, init)
{
    add_node(10, 1);
    add_node(7, 2);
    add_node(8, 3);
    add_node(12, 4);
    add_node(10, 5);
    vector vec;
    get_node(vec);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(true), 0);
}

//四台机器丢失,重新选主以恢复服务
TEST_F(ScheduleTest, del_4_select_master)
{
    del_node(4, 4);
        vector vec;
        get_node(vec);
    ScheduleTable old_table(table);
        ASSERT_EQ(select_master(table, vec), 0);
        ASSERT_EQ(check(true), 0);
    check_diff(table, old_table);
}

//补全缺少的副本
TEST_F(ScheduleTest, fix_and_ballance)
{
        vector vec;
        get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(true), 0);
    check_diff(table, old_table);
}

//集群扩容
TEST_F(ScheduleTest, add_8_30_8_ballance)
{
    add_node(8, 5);
    add_node(30, 6);
    add_node(8, 7);
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(true), 0);
    check_diff(table, old_table);
}

//集群大规模扩容
TEST_F(ScheduleTest, add_many_host_ballance)
{
    add_node(8, 5);
    add_node(4, 6);
    add_node(4, 7);
    add_node(10, 4);
    add_node(20, 7);
    add_node(18, 8);
    add_node(5, 9);
    add_node(35, 10);
    add_node(30, 11);
    add_node(100, 12);
    add_node(50, 13);
    add_node(200, 14);
    add_node(200, 15);
    add_node(200, 16);
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(), 0);
    check_diff(table, old_table);
}

//后面的测例当有机器丢失后直接fix_and_ballance,只是为了测试方便
//实际上当有机器丢失后,都应该先选主快速恢复服务,再修复缺失的副本

//两个容灾块丢失,重置后重新加入集群
TEST_F(ScheduleTest, del_200_200_add_200_200_fix_and_ballance)
{
    del_node(200,15);
    del_node(200, 16);
    add_node(200, 15);
    add_node(200, 16);
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(), 0);
    check_diff(table, old_table);
}

//100台机器下线,加入140台新机器
TEST_F(ScheduleTest, del_100_add_70_70_fix_and_ballance)
{
    del_node(100, 14);
    add_node(70, 5);
    add_node(70, 17);
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(), 0);
    check_diff(table, old_table);
}

//丢失1台机器,选主快速恢复服务
TEST_F(ScheduleTest, del_1_select_master)
{
    del_node(1, 17);
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(select_master(table, vec), 0);
    ASSERT_EQ(check(), 0);
    check_diff(table, old_table);
}

//修复缺失副本
TEST_F(ScheduleTest, fix_and_ballance2)
{
    vector vec;
    get_node(vec);
    ScheduleTable old_table(table);
    ASSERT_EQ(fix_and_balance(table, vec), 0);
    ASSERT_EQ(check_zero(), 0);
    ASSERT_EQ(check(), 0);
    check_diff(table, old_table);
}

测试结果

对于集群规模较小的测例打印出了具体分布情况
格式:“容灾块编号/机器编号: 主副本数 副本数”

Running main() from gtest_main.cc
[==========] Running 9 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 9 tests from ScheduleTest
[ RUN      ] ScheduleTest.init
1/1: 22 66
1/2: 22 66
1/3: 21 66
1/4: 22 66
1/5: 22 66
1/6: 22 66
1/7: 22 65
1/8: 21 65
1/9: 22 65
1/10: 21 65
2/11: 22 66
2/12: 22 66
2/13: 22 66
2/14: 21 66
2/15: 22 66
2/16: 22 66
2/17: 21 65
3/18: 21 66
3/19: 22 66
3/20: 22 66
3/21: 22 66
3/22: 22 66
3/23: 21 65
3/24: 21 65
3/25: 21 65
4/26: 22 65
4/27: 22 65
4/28: 22 65
4/29: 22 65
4/30: 22 65
4/31: 22 65
4/32: 22 65
4/33: 22 65
4/34: 21 65
4/35: 22 65
4/36: 22 65
4/37: 22 65
5/38: 22 65
5/39: 22 65
5/40: 22 65
5/41: 22 65
5/42: 22 65
5/43: 22 65
5/44: 22 65
5/45: 22 65
5/46: 22 65
5/47: 22 65
node count: 47
[       OK ] ScheduleTest.init (1804 ms)
[ RUN      ] ScheduleTest.del_4_select_master
1/1: 24 66
1/2: 24 66
1/3: 24 66
1/4: 24 66
1/5: 24 66
1/6: 24 66
1/7: 24 65
1/8: 24 65
1/9: 24 65
1/10: 23 65
2/11: 23 66
2/12: 24 66
2/13: 24 66
2/14: 23 66
2/15: 24 66
2/16: 24 66
2/17: 24 65
3/18: 23 66
3/19: 24 66
3/20: 24 66
3/21: 24 66
3/22: 24 66
3/23: 24 65
3/24: 24 65
3/25: 23 65
4/30: 23 65
4/31: 23 65
4/32: 24 65
4/33: 24 65
4/34: 23 65
4/35: 24 65
4/36: 24 65
4/37: 24 65
5/38: 24 65
5/39: 24 65
5/40: 24 65
5/41: 24 65
5/42: 24 65
5/43: 24 65
5/44: 24 65
5/45: 24 65
5/46: 24 65
5/47: 24 65
node count: 43
106 master will change
0 buckets will change or add
[       OK ] ScheduleTest.del_4_select_master (621 ms)
[ RUN      ] ScheduleTest.fix_and_ballance
1/1: 24 71
1/2: 24 71
1/3: 24 71
1/4: 24 71
1/5: 24 71
1/6: 24 71
1/7: 24 71
1/8: 24 71
1/9: 24 71
1/10: 23 71
2/11: 23 72
2/12: 24 72
2/13: 24 72
2/14: 23 72
2/15: 24 72
2/16: 24 72
2/17: 24 72
3/18: 23 72
3/19: 24 72
3/20: 24 72
3/21: 24 72
3/22: 24 72
3/23: 24 72
3/24: 24 72
3/25: 23 72
4/30: 23 72
4/31: 23 72
4/32: 24 72
4/33: 24 72
4/34: 23 71
4/35: 24 71
4/36: 24 71
4/37: 24 71
5/38: 24 71
5/39: 24 71
5/40: 24 71
5/41: 24 71
5/42: 24 71
5/43: 24 71
5/44: 24 71
5/45: 24 71
5/46: 24 71
5/47: 24 71
node count: 43
0 master will change
271 buckets will change or add
[       OK ] ScheduleTest.fix_and_ballance (3489 ms)
[ RUN      ] ScheduleTest.add_8_30_8_ballance
1/1: 12 35
1/2: 12 35
1/3: 12 35
1/4: 12 35
1/5: 12 35
1/6: 12 35
1/7: 12 35
1/8: 12 35
1/9: 12 35
1/10: 12 35
2/11: 12 35
2/12: 12 35
2/13: 12 35
2/14: 12 35
2/15: 12 35
2/16: 12 35
2/17: 12 35
3/18: 12 35
3/19: 12 35
3/20: 12 35
3/21: 12 35
3/22: 12 35
3/23: 12 35
3/24: 12 35
3/25: 12 35
5/26: 11 35
5/27: 11 34
5/28: 11 34
5/29: 11 34
4/30: 12 35
4/31: 12 35
4/32: 12 35
4/33: 12 35
4/34: 12 35
4/35: 12 35
4/36: 12 35
4/37: 12 35
5/38: 12 35
5/39: 12 35
5/40: 12 35
5/41: 12 35
5/42: 12 35
5/43: 12 35
5/44: 12 35
5/45: 12 35
5/46: 12 35
5/47: 12 35
5/48: 12 34
5/49: 12 34
5/50: 11 34
5/51: 11 34
6/52: 11 35
6/53: 11 34
6/54: 11 34
6/55: 11 34
6/56: 11 34
6/57: 11 34
6/58: 11 34
6/59: 11 34
6/60: 11 34
6/61: 11 34
6/62: 11 34
6/63: 11 34
6/64: 11 34
6/65: 11 34
6/66: 11 34
6/67: 11 34
6/68: 11 34
6/69: 11 34
6/70: 11 34
6/71: 11 34
6/72: 11 34
6/73: 11 34
6/74: 11 34
6/75: 11 34
6/76: 11 34
6/77: 11 34
6/78: 11 34
6/79: 11 34
6/80: 11 34
6/81: 11 34
7/82: 11 35
7/83: 11 34
7/84: 11 34
7/85: 11 34
7/86: 11 34
7/87: 11 34
7/88: 11 34
7/89: 11 34
node count: 89
508 master will change
1567 buckets will change or add
[       OK ] ScheduleTest.add_8_30_8_ballance (3190 ms)
[ RUN      ] ScheduleTest.add_many_host_ballance
node count: 973
884 master will change
2716 buckets will change or add
[       OK ] ScheduleTest.add_many_host_ballance (6122 ms)
[ RUN      ] ScheduleTest.del_200_200_add_200_200_fix_and_ballance
node count: 973
454 master will change
1200 buckets will change or add
[       OK ] ScheduleTest.del_200_200_add_200_200_fix_and_ballance (8025 ms)
[ RUN      ] ScheduleTest.del_100_add_70_70_fix_and_ballance
node count: 1013
226 master will change
420 buckets will change or add
[       OK ] ScheduleTest.del_100_add_70_70_fix_and_ballance (9646 ms)
[ RUN      ] ScheduleTest.del_1_select_master
node count: 1012
1 master will change
0 buckets will change or add
[       OK ] ScheduleTest.del_1_select_master (519 ms)
[ RUN      ] ScheduleTest.fix_and_ballance2
node count: 1012
0 master will change
3 buckets will change or add
[       OK ] ScheduleTest.fix_and_ballance2 (10056 ms)
[----------] 9 tests from ScheduleTest (43472 ms total)

[----------] Global test environment tear-down
[==========] 9 tests from 1 test case ran. (43472 ms total)
[  PASSED  ] 9 tests.

1000台机器、3000个副本,选主需要0.5s,算分布表需要10s

补充

对于超大集群,根据实际情况,还有很多优化可以做,这里乱说一个未经实践过的想法吧:首先排除有个容灾块拥有超过1/m的机器,导致最优分布也不是平均的极端情况。在此前提下,先用贪心之类的算法算出一个分布方案,然后从不同的容灾块中挑出总共300台副本数超过平均数机器,再从不同的容灾块中挑出若干台副本数小于平均数的机器,使得它们合在一起的平均数正好相当于全集群的平均数。
现在我们有了一个几百台机器的集合,找出m个副本都在这个集合的机器上的所有桶,用上文算法求一下这个子集的最优解。
重复上面的过程(可能可以用多线程加速一下),应该能得到满意的分布方案。

你可能感兴趣的:(分布式存储系统的分容灾块数据分布算法优化及测试)