视音频数据处理入门:PCM音频采样数据处理

本文分别介绍如下几个PCM音频采样数据处理函数:
分离PCM16LE双声道音频采样数据的左声道和右声道
将PCM16LE双声道音频采样数据中左声道的音量降一半
将PCM16LE双声道音频采样数据的声音速度提高一倍
将PCM16LE双声道音频采样数据转换为PCM8音频采样数据
从PCM16LE单声道音频采样数据中截取一部分数据
将PCM16LE双声道音频采样数据转换为WAVE格式音频数据
音频采样数据在视频播放器的解码流程中的位置如下图所示。


视音频数据处理入门:PCM音频采样数据处理_第1张图片

函数列表

(1)分离PCM16LE双声道音频采样数据的左声道和右声道

本程序中的函数可以将PCM16LE双声道数据中左声道和右声道的数据分离成两个文件。函数的代码如下所示。

/** 
 * Split Left and Right channel of 16LE PCM file. 
 * @param url  Location of PCM file. 
 * 
 */  
int simplest_pcm16le_split(char *url){  
    FILE *fp=fopen(url,"rb+");  
    FILE *fp1=fopen("output_l.pcm","wb+");  
    FILE *fp2=fopen("output_r.pcm","wb+");  
  
    unsigned char *sample=(unsigned char *)malloc(4);  
  
    while(!feof(fp)){  
        fread(sample,1,4,fp);  
        //L  
        fwrite(sample,1,2,fp1);  
        //R  
        fwrite(sample+2,1,2,fp2);  
    }  
  
    free(sample);  
    fclose(fp);  
    fclose(fp1);  
    fclose(fp2);  
    return 0;  
}  

从代码可以看出,PCM16LE双声道数据中左声道和右声道的采样值是间隔存储的。每个采样值占用2Byte空间。代码运行后,会把NocturneNo2inEflat_44.1k_s16le.pcm的PCM16LE格式的数据分离为两个单声道数据:
output_l.pcm:左声道数据。
output_r.pcm:右声道数据。
注:本文中声音样值的采样频率一律是44100Hz,采样格式一律为16LE。“16”代表采样位数是16bit。由于1Byte=8bit,所以一个声道的一个采样值占用2Byte。“LE”代表Little Endian,代表2 Byte采样值的存储方式为高位存在高地址中。

下图为输入的双声道PCM数据的波形图。上面的波形图是左声道的图形,下面的波形图是右声道的波形。图中的横坐标是时间,总长度为22秒;纵坐标是取样值,取值范围从-32768到32767。


视音频数据处理入门:PCM音频采样数据处理_第2张图片

下图为分离后左声道数据output_l.pcm的音频波形图


视音频数据处理入门:PCM音频采样数据处理_第3张图片

下图为分离后右声道数据output_r.pcm的音频波形图。
视音频数据处理入门:PCM音频采样数据处理_第4张图片
(2)将PCM16LE双声道音频采样数据中左声道的音量降一半

本程序中的函数可以将PCM16LE双声道数据中左声道的音量降低一半。函数的代码如下所示。

/** 
 * Halve volume of Left channel of 16LE PCM file 
 * @param url  Location of PCM file. 
 */  
int simplest_pcm16le_halfvolumeleft(char *url){  
    FILE *fp=fopen(url,"rb+");  
    FILE *fp1=fopen("output_halfleft.pcm","wb+");  
  
    int cnt=0;  
  
    unsigned char *sample=(unsigned char *)malloc(4);  
  
    while(!feof(fp)){  
        short *samplenum=NULL;  
        fread(sample,1,4,fp);  
  
        samplenum=(short *)sample;  
        *samplenum=*samplenum/2;  
        //L  
        fwrite(sample,1,2,fp1);  
        //R  
        fwrite(sample+2,1,2,fp1);  
  
        cnt++;  
    }  
    printf("Sample Cnt:%d\n",cnt);  
  
    free(sample);  
    fclose(fp);  
    fclose(fp1);  
    return 0;  
}  ```
从源代码可以看出,本程序在读出左声道的2 Byte的取样值之后,将其当成了C语言中的一个short类型的变量。将该数值除以2之后写回到了PCM文件中。下图为输入PCM双声道音频采样数据的波形图。
![](http://upload-images.jianshu.io/upload_images/2280430-6382c5d44c64aca1?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
下图为输出的左声道经过处理后的波形图。可以看出左声道的波形幅度降低了一半。
![](http://upload-images.jianshu.io/upload_images/2280430-4e552704d071d613?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
#####(3)将PCM16LE双声道音频采样数据的声音速度提高一倍
本程序中的函数可以通过抽象的方式将PCM16LE双声道数据的速度提高一倍。函数的代码如下所示。

/**

  • Re-sample to double the speed of 16LE PCM file

  • @param url Location of PCM file.
    */
    int simplest_pcm16le_doublespeed(char *url){
    FILE *fp=fopen(url,"rb+");
    FILE *fp1=fopen("output_doublespeed.pcm","wb+");

    int cnt=0;

    unsigned char *sample=(unsigned char *)malloc(4);

    while(!feof(fp)){

     fread(sample,1,4,fp);  
    
     if(cnt%2!=0){  
         //L  
         fwrite(sample,1,2,fp1);  
         //R  
         fwrite(sample+2,1,2,fp1);  
     }  
     cnt++;  
    

    }
    printf("Sample Cnt:%d\n",cnt);

    free(sample);
    fclose(fp);
    fclose(fp1);
    return 0;
    }

从源代码可以看出,本程序只采样了每个声道奇数点的样值。处理完成后,原本22秒左右的音频变成了11秒左右。音频的播放速度提高了2倍,音频的音调也变高了很多。下图为输入PCM双声道音频采样数据的波形图。
![](http://upload-images.jianshu.io/upload_images/2280430-b9d29dfc82a27d86?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
下图为输出的PCM双声道音频采样数据的波形图。通过时间轴可以看出音频变短了很多。
![](http://upload-images.jianshu.io/upload_images/2280430-d4c42fbff196fc22?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
#####(4)将PCM16LE双声道音频采样数据转换为PCM8音频采样数据
本程序中的函数可以通过计算的方式将PCM16LE双声道数据16bit的采样位数转换为8bit。函数的代码如下所示。

/**

  • Convert PCM-16 data to PCM-8 data.

  • @param url Location of PCM file.
    */
    int simplest_pcm16le_to_pcm8(char *url){
    FILE *fp=fopen(url,"rb+");
    FILE *fp1=fopen("output_8.pcm","wb+");

    int cnt=0;

    unsigned char *sample=(unsigned char *)malloc(4);

    while(!feof(fp)){

     short *samplenum16=NULL;  
     char samplenum8=0;  
     unsigned char samplenum8_u=0;  
     fread(sample,1,4,fp);  
     //(-32768-32767)  
     samplenum16=(short *)sample;  
     samplenum8=(*samplenum16)>>8;  
     //(0-255)  
     samplenum8_u=samplenum8+128;  
     //L  
     fwrite(&samplenum8_u,1,1,fp1);  
    
     samplenum16=(short *)(sample+2);  
     samplenum8=(*samplenum16)>>8;  
     samplenum8_u=samplenum8+128;  
     //R  
     fwrite(&samplenum8_u,1,1,fp1);  
     cnt++;  
    

    }
    printf("Sample Cnt:%d\n",cnt);

    free(sample);
    fclose(fp);
    fclose(fp1);
    return 0;
    }

PCM16LE格式的采样数据的取值范围是-32768到32767,而PCM8格式的采样数据的取值范围是0到255。所以PCM16LE转换到PCM8需要经过两个步骤:第一步是将-32768到32767的16bit有符号数值转换为-128到127的8bit有符号数值,第二步是将-128到127的8bit有符号数值转换为0到255的8bit无符号数值。在本程序中,16bit采样数据是通过short类型变量存储的,而8bit采样数据是通过unsigned char类型存储的。下图为输入的16bit的PCM双声道音频采样数据的波形图。
![](http://upload-images.jianshu.io/upload_images/2280430-d5beb4103db842a7?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
下图为输出的8bit的PCM双声道音频采样数据的波形图。注意观察图中纵坐标的取值范围已经变为0至255。如果仔细聆听声音的话,会发现8bit PCM的音质明显不如16 bit PCM的音质。
![](http://upload-images.jianshu.io/upload_images/2280430-13a57156fc3d59d8?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
#####(5)将从PCM16LE单声道音频采样数据中截取一部分数据
本程序中的函数可以从PCM16LE单声道数据中截取一段数据,并输出截取数据的样值。函数的代码如下所示。

/**

  • Cut a 16LE PCM single channel file.

  • @param url Location of PCM file.

  • @param start_num start point

  • @param dur_num how much point to cut
    */
    int simplest_pcm16le_cut_singlechannel(char *url,int start_num,int dur_num){
    FILE *fp=fopen(url,"rb+");
    FILE *fp1=fopen("output_cut.pcm","wb+");
    FILE *fp_stat=fopen("output_cut.txt","wb+");

    unsigned char *sample=(unsigned char *)malloc(2);

    int cnt=0;
    while(!feof(fp)){
    fread(sample,1,2,fp);
    if(cnt>start_num&&cnt<=(start_num+dur_num)){
    fwrite(sample,1,2,fp1);

         short samplenum=sample[1];  
         samplenum=samplenum*256;  
         samplenum=samplenum+sample[0];  
    
         fprintf(fp_stat,"%6d,",samplenum);  
         if(cnt%10==0)  
             fprintf(fp_stat,"\n",samplenum);  
     }  
     cnt++;  
    

    }

    free(sample);
    fclose(fp);
    fclose(fp1);
    fclose(fp_stat);
    return 0;
    }

本程序可以从PCM数据中选取一段采样值保存下来,并且输出这些采样值的数值。上述代码运行后,会把单声道PCM16LE格式的“drum.pcm”中从2360点开始的120点的数据保存成output_cut.pcm文件。下图为“drum.pcm”的波形图,该音频采样频率为44100KHz,长度为0.5秒,一共包含约22050个采样点。
![](http://upload-images.jianshu.io/upload_images/2280430-7ba1f211f996b420?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
下图为截取出来的output_cut.pcm文件中的数据。
![](http://upload-images.jianshu.io/upload_images/2280430-08a1d82ab00491d5?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
下面列出了上述数据的采样值。
[plain] view plain copy 在CODE上查看代码片派生到我的代码片

4460, 5192, 5956, 6680, 7199, 6706, 5727, 4481, 3261, 1993,
1264, 747, 767, 752, 1248, 1975, 2473, 2955, 2952, 2447,
974, -1267, -4000, -6965,-10210,-13414,-16639,-19363,-21329,-22541,
23028,-22545,-21055,-19067,-16829,-14859,-12596, -9900, -6684, -3475,
-983, 1733, 3978, 5734, 6720, 6978, 6993, 7223, 7225, 7440,
7688, 8431, 8944, 9468, 9947, 10688, 11194, 11946, 12449, 12446,
12456, 11974, 11454, 10952, 10167, 9425, 8153, 6941, 5436, 3716,
1952, 236, -1254, -2463, -3493, -4223, -4695, -4927, -5190, -4941,
-4188, -2956, -1490, -40, 705, 932, 446, -776, -2512, -3994,
-5723, -7201, -8687,-10157,-11134,-11661,-11642,-11168,-10155, -9142,
-7888, -7146, -6186, -5694, -4971, -4715, -4498, -4471, -4468, -4452,
-4452, -3940, -2980, -1984, -752, 257, 1021, 1264, 1032, 31,

#####(6)将PCM16LE双声道音频采样数据转换为WAVE格式音频数据
WAVE格式音频(扩展名为“.wav”)是Windows系统中最常见的一种音频。该格式的实质就是在PCM文件的前面加了一个文件头。本程序的函数就可以通过在PCM文件前面加一个WAVE文件头从而封装为WAVE格式音频。函数的代码如下所示。

/**

  • Convert PCM16LE raw data to WAVE format

  • @param pcmpath Input PCM file.

  • @param channels Channel number of PCM file.

  • @param sample_rate Sample rate of PCM file.

  • @param wavepath Output WAVE file.
    */
    int simplest_pcm16le_to_wave(const char *pcmpath,int channels,int sample_rate,const char *wavepath)
    {

    typedef struct WAVE_HEADER{
    char fccID[4];
    unsigned long dwSize;
    char fccType[4];
    }WAVE_HEADER;

    typedef struct WAVE_FMT{
    char fccID[4];
    unsigned long dwSize;
    unsigned short wFormatTag;
    unsigned short wChannels;
    unsigned long dwSamplesPerSec;
    unsigned long dwAvgBytesPerSec;
    unsigned short wBlockAlign;
    unsigned short uiBitsPerSample;
    }WAVE_FMT;

    typedef struct WAVE_DATA{
    char fccID[4];
    unsigned long dwSize;
    }WAVE_DATA;

if(channels==0||sample_rate==0){  
channels = 2;  
sample_rate = 44100;  
}  
int bits = 16;  

WAVE_HEADER   pcmHEADER;    
WAVE_FMT   pcmFMT;    
WAVE_DATA   pcmDATA;    

unsigned   short   m_pcmData;  
FILE   *fp,*fpout;    

fp=fopen(pcmpath, "rb");  
if(fp == NULL) {    
    printf("open pcm file error\n");  
    return -1;    
}  
fpout=fopen(wavepath,   "wb+");  
if(fpout == NULL) {      
    printf("create wav file error\n");    
    return -1;   
}          
//WAVE_HEADER  
memcpy(pcmHEADER.fccID,"RIFF",strlen("RIFF"));                      
memcpy(pcmHEADER.fccType,"WAVE",strlen("WAVE"));    
fseek(fpout,sizeof(WAVE_HEADER),1);   
//WAVE_FMT  
pcmFMT.dwSamplesPerSec=sample_rate;    
pcmFMT.dwAvgBytesPerSec=pcmFMT.dwSamplesPerSec*sizeof(m_pcmData);    
pcmFMT.uiBitsPerSample=bits;  
memcpy(pcmFMT.fccID,"fmt ",strlen("fmt "));    
pcmFMT.dwSize=16;    
pcmFMT.wBlockAlign=2;    
pcmFMT.wChannels=channels;    
pcmFMT.wFormatTag=1;    

fwrite(&pcmFMT,sizeof(WAVE_FMT),1,fpout);   

//WAVE_DATA;  
memcpy(pcmDATA.fccID,"data",strlen("data"));    
pcmDATA.dwSize=0;  
fseek(fpout,sizeof(WAVE_DATA),SEEK_CUR);  

fread(&m_pcmData,sizeof(unsigned short),1,fp);  
while(!feof(fp)){    
    pcmDATA.dwSize+=2;  
    fwrite(&m_pcmData,sizeof(unsigned short),1,fpout);  
    fread(&m_pcmData,sizeof(unsigned short),1,fp);  
}    

pcmHEADER.dwSize=44+pcmDATA.dwSize;  

rewind(fpout);  
fwrite(&pcmHEADER,sizeof(WAVE_HEADER),1,fpout);  
fseek(fpout,sizeof(WAVE_FMT),SEEK_CUR);  
fwrite(&pcmDATA,sizeof(WAVE_DATA),1,fpout);  
  
fclose(fp);  
fclose(fpout);  

return 0;  

}

WAVE文件是一种RIFF格式的文件。其基本块名称是“WAVE”,其中包含了两个子块“fmt”和“data”。从编程的角度简单说来就是由WAVE_HEADER、WAVE_FMT、WAVE_DATA、采样数据共4个部分组成。它的结构如下所示。
WAVE_HEADER
WAVE_FMT
WAVE_DATA
PCM数据

其中前3部分的结构如下所示。在写入WAVE文件头的时候给其中的每个字段赋上合适的值就可以了。但是有一点需要注意:WAVE_HEADER和WAVE_DATA中包含了一个文件长度信息的dwSize字段,该字段的值必须在写入完音频采样数据之后才能获得。因此这两个结构体最后才写入WAVE文件中

typedef struct WAVE_HEADER{
char fccID[4];
unsigned long dwSize;
char fccType[4];
}WAVE_HEADER;

typedef struct WAVE_FMT{
char fccID[4];
unsigned long dwSize;
unsigned short wFormatTag;
unsigned short wChannels;
unsigned long dwSamplesPerSec;
unsigned long dwAvgBytesPerSec;
unsigned short wBlockAlign;
unsigned short uiBitsPerSample;
}WAVE_FMT;

typedef struct WAVE_DATA{
char fccID[4];
unsigned long dwSize;
}WAVE_DATA;

本程序的函数执行完成后,就可将NocturneNo2inEflat_44.1k_s16le.pcm文件封装成output_nocturne.wav文件。

你可能感兴趣的:(视音频数据处理入门:PCM音频采样数据处理)