cogroup
官方文档描述:
For each key k in `this` or `other`, return a resulting RDD that contains a tuple
with the list of values for that key in `this` as well as `other`.
函数原型:
def cogroup[W](other: JavaPairRDD[K, W], partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W])]
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])]
def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3], partitioner: Partitioner): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])]
def cogroup[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (JIterable[V], JIterable[W])]
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2]): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])]
def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3]): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])]
def cogroup[W](other: JavaPairRDD[K, W], numPartitions: Int): JavaPairRDD[K, (JIterable[V], JIterable[W])]
def cogroup[W1, W2](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], numPartitions: Int): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2])]
def cogroup[W1, W2, W3](other1: JavaPairRDD[K, W1], other2: JavaPairRDD[K, W2], other3: JavaPairRDD[K, W3], numPartitions: Int): JavaPairRDD[K, (JIterable[V], JIterable[W1], JIterable[W2], JIterable[W3])]
源码分析:
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Iterable[V], Iterable[W]))] = self.withScope {
if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
throw new SparkException("Default partitioner cannot partition array keys.")
}
val cg = new CoGroupedRDD[K](Seq(self, other), partitioner)
cg.mapValues { case Array(vs, w1s) =>
(vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]])
}
}
override def getDependencies: Seq[Dependency[_]] = {
rdds.map { rdd: RDD[_ <: Product2[K, _]] =>
if (rdd.partitioner == Some(part)) {
logDebug("Adding one-to-one dependency with " + rdd)
new OneToOneDependency(rdd)
} else {
logDebug("Adding shuffle dependency with " + rdd)
new ShuffleDependency[K, Any, CoGroupCombiner](rdd, part, serializer)
}
}
}
override def getPartitions: Array[Partition] = {
val array = new Array[Partition](part.numPartitions)
for (i <- 0 until array.length) {
// Each CoGroupPartition will have a dependency per contributing RDD
array(i) = new CoGroupPartition(i, rdds.zipWithIndex.map { case (rdd, j) =>
// Assume each RDD contributed a single dependency, and get it
dependencies(j) match {
case s: ShuffleDependency[_, _, _] =>
None
case _ =>
Some(new NarrowCoGroupSplitDep(rdd, i, rdd.partitions(i)))
}
}.toArray)
}
array
}
**
cogroup() 的计算结果放在 CoGroupedRDD 中哪个 partition 是由用户设置的 partitioner 确定的(默认是 HashPartitioner)。
CoGroupedRDD 依赖的所有 RDD 放进数组 rdds[RDD] 中。再次,foreach i,如果 CoGroupedRDD 和 rdds(i) 对应的 RDD 是 OneToOneDependency 关系,那么 Dependecy[i] = new OneToOneDependency(rdd),否则 = new ShuffleDependency(rdd)。最后,返回与每个 parent RDD 的依赖关系数组 deps[Dependency]。
Dependency 类中的 getParents(partition id) 负责给出某个 partition 按照该 dependency 所依赖的 parent RDD 中的 partitions: List[Int]。
getPartitions() 负责给出 RDD 中有多少个 partition,以及每个 partition 如何序列化。
**
实例:
List data = Arrays.asList(1, 2, 4, 3, 5, 6, 7, 1, 2);
JavaRDD javaRDD = javaSparkContext.parallelize(data);
JavaPairRDD javaPairRDD = javaRDD.mapToPair(new PairFunction() {
@Override
public Tuple2 call(Integer integer) throws Exception {
return new Tuple2(integer,1);
}
});
//与 groupByKey() 不同,cogroup() 要 aggregate 两个或两个以上的 RDD。
JavaPairRDD,Iterable>> cogroupRDD = javaPairRDD.cogroup(javaPairRDD);
System.out.println(cogroupRDD.collect());
JavaPairRDD,Iterable>> cogroupRDD3 = javaPairRDD.cogroup(javaPairRDD, new Partitioner() {
@Override
public int numPartitions() {
return 2;
}
@Override
public int getPartition(Object key) {
return (key.toString()).hashCode()%numPartitions();
}
});
System.out.println(cogroupRDD3);
join
官方文档描述:
Return an RDD containing all pairs of elements with matching keys in `this` and `other`.
Each* pair of elements will be returned as a (k, (v1, v2)) tuple,
where (k, v1) is in `this` and* (k, v2) is in `other`.
Performs a hash join across the cluster.
函数原型:
def join[W](other: JavaPairRDD[K, W]): JavaPairRDD[K, (V, W)]
def join[W](other: JavaPairRDD[K, W], numPartitions: Int): JavaPairRDD[K, (V, W)]
def join[W](other: JavaPairRDD[K, W], partitioner: Partitioner): JavaPairRDD[K, (V, W)]
源码分析:
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = self.withScope {
this.cogroup(other, partitioner).flatMapValues( pair =>
for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w)
)
}
**
从源码中可以看出,join() 将两个 RDD[(K, V)] 按照 SQL 中的 join 方式聚合在一起。与 intersection() 类似,首先进行 cogroup(), 得到
**
实例:
List data = Arrays.asList(1, 2, 4, 3, 5, 6, 7);
final Random random = new Random();
JavaRDD javaRDD = javaSparkContext.parallelize(data);
JavaPairRDD javaPairRDD = javaRDD.mapToPair(new PairFunction() {
@Override
public Tuple2 call(Integer integer) throws Exception {
return new Tuple2(integer,random.nextInt(10));
}
});
JavaPairRDD> joinRDD = javaPairRDD.join(javaPairRDD);
System.out.println(joinRDD.collect());
JavaPairRDD> joinRDD2 = javaPairRDD.join(javaPairRDD,2);
System.out.println(joinRDD2.collect());
JavaPairRDD> joinRDD3 = javaPairRDD.join(javaPairRDD, new Partitioner() {
@Override
public int numPartitions() {
return 2;
}
@Override
public int getPartition(Object key) {
return (key.toString()).hashCode()%numPartitions();
}
});
System.out.println(joinRDD3.collect());