Python实现八大排序算法

常见的八大排序算法,他们之间关系如下:


Python实现八大排序算法_第1张图片

*排序算法.png

比较

Python实现八大排序算法_第2张图片
复杂度比较

稳定性是指如果存在多个具有相同排序码的记录,经过排序后,这些记录的相对次序仍然保持不变,则这种排序算法称为稳定的。

应用场景

  • 若n较小(如n≤50),可采用直接插入或直接选择排序。  
    当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
  • 若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
  • 若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。  
    快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;  
    堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。  
    若要求排序稳定,则可选用归并排序。但前面介绍的从单个记录起进行两两归并的排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子序列,然后再两两归并之。因为直接插入排序是稳定 的,所以改进后的归并排序仍是稳定的。

直接插入排序

算法思想

Python实现八大排序算法_第3张图片

*直接插入排序.gif

直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过。因此,从上面的描述中我们可以发现,直接插入排序可以用两个循环完成:
1、第一层循环:遍历待比较的所有数组元素
2、第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较。如果:selected > ordered,那么将二者交换

代码实现

# 直接插入排序
def insert_sort(L):
    # 遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始
    for x in range(1, len(L)):
        # 将该元素与已排序好的前序数组依次比较,如果该元素小,则交换
        # range(x-1,-1,-1):从x-1倒序循环到0
        for i in range(x-1, -1, -1):
            # 判断:如果符合条件则交换
            if L[i] > L[i+1]:
                L[i], L[i+1] = L[i+1], L[i]

希尔排序

算法思想

Python实现八大排序算法_第4张图片

*希尔排序.png

希尔排序的算法思想:将待排序数组按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序。同样的:从上面的描述中我们可以发现:希尔排序的总体实现应该由三个循环完成:
1、第一层循环:将gap依次折半,对序列进行分组,直到gap=1
2、第二、三层循环:也即直接插入排序所需要的两次循环。具体描述见上。

代码实现

# 希尔排序
def insert_shell(L):
    # 初始化gap值,此处利用序列长度的一般为其赋值
    gap = int(len(L)/2)
    # 第一层循环:依次改变gap值对列表进行分组
    while gap >= 1:
        # 下面:利用直接插入排序的思想对分组数据进行排序
        # range(gap,len(L)):从gap开始
        for x in range(gap, len(L)):
            # range(x-gap,-1,-gap):从x-gap开始与选定元素开始倒序比较,每个比较元素之间间隔gap
            for i in range(x-gap, -1, -gap):
                # 如果该组当中两个元素满足交换条件,则进行交换
                if L[i] > L[i+gap]:
                    L[i], L[i+gap] = L[i+gap], L[i]
        # while循环条件折半
        gap = int(gap/2)

简单选择排序

算法思想

Python实现八大排序算法_第5张图片

*简单选择排序.gif

简单选择排序的基本思想:比较+交换。
1、从待排序序列中,找到关键字最小的元素;
2、如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
3、从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。因此我们可以发现,简单选择排序也是通过两层循环实现。

  • 第一层循环:依次遍历序列当中的每一个元素
  • 第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。

代码实现

# 简单选择排序
def select_sort(L):
    # 依次遍历序列中的每一个元素
    for x in range(0, len(L)):
        # 将当前位置的元素定义此轮循环当中的最小值
        minimum = L[x]
        # 将该元素与剩下的元素依次比较寻找最小元素
        for i in range(x+1, len(L)):
            if L[i] < minimum:
                L[i], minimum = minimum, L[i]
        # 将比较后得到的真正的最小值赋值给当前位置
        L[x] = minimum

堆排序

堆的概念

堆:本质是一种数组对象。特别重要的一点性质:任意的叶子节点小于(或大于)它所有的父节点。对此,又分为大顶堆和小顶堆,大顶堆要求节点的元素都要大于其孩子,小顶堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求。利用堆排序,就是基于大顶堆或者小顶堆的一种排序方法。下面,我们通过大顶堆来实现。

基本思想

堆排序可以按照以下步骤来完成:

1、首先将序列构建称为大顶堆;(这样满足了大顶堆那条性质:位于根节点的元素一定是当前序列的最大值)
Python实现八大排序算法_第6张图片
*构建大顶堆.png

2、取出当前大顶堆的根节点,将其与序列末尾元素进行交换;(此时:序列末尾的元素为已排序的最大值;由于交换了元素,当前位于根节点的堆并不一定满足大顶堆的性质)

对交换后的n-1个序列元素进行调整,使其满足大顶堆的性质;
Python实现八大排序算法_第7张图片
*Paste_Image.png

3、重复2.3步骤,直至堆中只有1个元素为止

代码实现:

# **********获取左右叶子节点**********
def LEFT(i):
    return 2*i + 1


def RIGHT(i):
    return 2*i + 2


# ********** 调整大顶堆 **********
# L:待调整序列 length: 序列长度 i:需要调整的结点
def adjust_max_heap(L, length, i):
    # 定义一个int值保存当前序列最大值的下标
    largest = i
    # 执行循环操作:两个任务:1 寻找最大值的下标;2.最大值与父节点交换
    while 1:
        # 获得序列左右叶子节点的下标
        left, right = LEFT(i), RIGHT(i)
        # 当左叶子节点的下标小于序列长度 并且 左叶子节点的值大于父节点时,将左叶子节点的下标赋值给largest
        if left < length and L[left] > L[i]:
            largest = left
            print('左叶子节点')
        else:
            largest = i
        # 当右叶子节点的下标小于序列长度 并且 右叶子节点的值大于父节点时,将右叶子节点的下标值赋值给largest
        if right < length and L[right] > L[largest]:
            largest = right
            print('右叶子节点')
        # 如果largest不等于i 说明当前的父节点不是最大值,需要交换值
        if largest != i:
            L[i], L[largest] = L[largest], L[i]
            i = largest
            print(largest)
            continue
        else:
            break


# ********** 建立大顶堆 **********
def build_max_heap(L):
    length = len(L)
    for x in range(int((length-1)/2), -1, -1):
        adjust_max_heap(L, length, x)


# ********** 堆排序 **********
def heap_sort(L):
    # 先建立大顶堆,保证最大值位于根节点;并且父节点的值大于叶子结点
    build_max_heap(L)
    # i:当前堆中序列的长度.初始化为序列的长度
    i = len(L)
    # 执行循环:1. 每次取出堆顶元素置于序列的最后(len-1,len-2,len-3...)
    #           2. 调整堆,使其继续满足大顶堆的性质,注意实时修改堆中序列的长度
    while i > 0:
        L[0], L[i-1] = L[i-1], L[0]
        i = i - 1
        # 调整大顶堆
        adjust_max_heap(L, i, 0)

冒泡排序

基本思想

Python实现八大排序算法_第8张图片

*冒泡排序.gif

冒泡排序思路比较简单
1、将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)
2、对序列当中剩下的n-1个元素再次执行步骤1。
3、对于长度为n的序列,一共需要执行n-1轮比较(利用while循环可以减少执行次数)

代码实现

#冒泡排序
def bubble_sort(L):
    length = len(L)
#序列长度为length,需要执行length-1轮交换
    for x in range(1,length):
#对于每一轮交换,都将序列当中的左右元素进行比较
#每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可
        for i in range(0,length-x):
            if L[i] > L[i+1]:
                temp = L[i]
                L[i] = L[i+1]
                L[i+1] = temp

快速排序

算法思想

Python实现八大排序算法_第9张图片

*快速排序.gif

快速排序的基本思想:挖坑填数+分治法
1、从序列当中选择一个基准数(pivot)
在这里我们选择序列当中第一个数最为基准数
2、将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧
3、重复步骤1.2,直到所有子集当中只有一个元素为止。
伪代码描述如下:
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中

代码实现

#快速排序
#L:待排序的序列;start排序的开始index,end序列末尾的index
#对于长度为length的序列:start = 0;end = length-1
def quick_sort(L,start,end):
  if start < end:
      i , j , pivot = start , end , L[start]
      while i < j:
#从右开始向左寻找第一个小于pivot的值
          while (i < j) and (L[j] >= pivot):
              j = j-1
#将小于pivot的值移到左边
          if (i < j):
              L[i] = L[j]
              i = i+1 
#从左开始向右寻找第一个大于pivot的值
          while (i < j) and (L[i] < pivot):
              i = i+1
#将大于pivot的值移到右边
          if (i < j):
              L[j] = L[i]
              j = j-1
#循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot
#pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可
#递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ end
      L[i] = pivot
#左侧序列继续排序
      quick_sort(L,start,i-1)
#右侧序列继续排序
      quick_sort(L,i+1,end)

归并排序

算法思想

Python实现八大排序算法_第10张图片

*归并排序.gif

1、归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。它的基本操作是:将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
2、归并排序其实要做两件事:

  • 分解----将序列每次折半拆分
  • 合并----将划分后的序列段两两排序合并
    因此,归并排序实际上就是两个操作,拆分+合并

3、如何合并?
L[first...mid]为第一段,L[mid+1...last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first...last]并且也有序。

  • 首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
  • 重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
  • 此时将temp[]中的元素复制给L[],则得到的L[first...last]有序

4、如何分解?在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。

代码实现

# 归并排序
#这是合并的函数
# 将序列L[first...mid]与序列L[mid+1...last]进行合并
def mergearray(L,first,mid,last,temp):
#对i,j,k分别进行赋值
  i,j,k = first,mid+1,0
#当左右两边都有数时进行比较,取较小的数
  while (i <= mid) and (j <= last):
      if L[i] <= L[j]:
          temp[k] = L[i]
          i = i+1
          k = k+1
      else:
          temp[k] = L[j]
          j = j+1
          k = k+1
#如果左边序列还有数
  while (i <= mid):
      temp[k] = L[i]
      i = i+1
      k = k+1
#如果右边序列还有数
  while (j <= last):
      temp[k] = L[j]
      j = j+1
      k = k+1
#将temp当中该段有序元素赋值给L待排序列使之部分有序
  for x in range(0,k):
      L[first+x] = temp[x]
# 这是分组的函数
def merge_sort(L,first,last,temp):
  if first < last:
      mid = (int)((first + last) / 2)
#使左边序列有序
      merge_sort(L,first,mid,temp)
#使右边序列有序
      merge_sort(L,mid+1,last,temp)
#将两个有序序列合并
      mergearray(L,first,mid,last,temp)
# 归并排序的函数
def merge_sort_array(L):
#声明一个长度为len(L)的空列表
  temp = len(L)*[None]
#调用归并排序
  merge_sort(L,0,len(L)-1,temp)

基数排序

算法思想

Python实现八大排序算法_第11张图片

*基数排序.gif

1、基数排序:通过序列中各个元素的值,对排序的N个元素进行若干趟的“分配”与“收集”来实现排序。
分配:我们将L[i]中的元素取出,首先确定其个位上的数字,根据该数字分配到与之序号相同的桶中
收集:当序列中所有的元素都分配到对应的桶中,再按照顺序依次将桶中的元素收集形成新的一个待排序列L[ ]
对新形成的序列L[]重复执行分配和收集元素中的十位、百位...直到分配完该序列中的最高位,则排序结束
2、根据上述“基数排序”的展示,我们可以清楚的看到整个实现的过程

代码实现

#************************基数排序****************************
#确定排序的次数
#排序的顺序跟序列中最大数的位数相关
def radix_sort_nums(L):
  maxNum = L[0]
#寻找序列中的最大数
  for x in L:
      if maxNum < x:
          maxNum = x
#确定序列中的最大元素的位数
  times = 0
  while (maxNum > 0):
      maxNum = (int)(maxNum/10)
      times = times+1
  return times
#找到num从低到高第pos位的数据
def get_num_pos(num,pos):
  return ((int)(num/(10**(pos-1))))%10
#基数排序
def radix_sort(L):
  count = 10*[None]        #存放各个桶的数据统计个数
  bucket = len(L)*[None]  #暂时存放排序结果
#从低位到高位依次执行循环
  for pos in range(1,radix_sort_nums(L)+1):
      #置空各个桶的数据统计
      for x in range(0,10):
          count[x] = 0
      #统计当前该位(个位,十位,百位....)的元素数目
      for x in range(0,len(L)):
          #统计各个桶将要装进去的元素个数
          j = get_num_pos(int(L[x]),pos)
          count[j] = count[j]+1
      #count[i]表示第i个桶的右边界索引
      for x in range(1,10):
          count[x] = count[x] + count[x-1]
      #将数据依次装入桶中
      for x in range(len(L)-1,-1,-1):
          #求出元素第K位的数字
          j = get_num_pos(L[x],pos)
          #放入对应的桶中,count[j]-1是第j个桶的右边界索引
          bucket[count[j]-1] = L[x]
          #对应桶的装入数据索引-1
          count[j] = count[j]-1
      # 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表
      for x in range(0,len(L)):
          L[x] = bucket[x]

你可能感兴趣的:(Python实现八大排序算法)