理解Python的PoolExecutor

Demo代码和引用知识点都参考自《理解Python并发编程一篇就够了|PoolExecutor篇》--董伟明或作者个人公众号Python之美, 《Python Cookbook》和Python并发编程之线程池/进程池。

ThreadPoolExecutorProcessPoolExecutor分别对threadingmultiprocessing进行了高级抽象,暴露出简单的统一接口。

通过ProcessPoolExecutor 来做示例。

主要提供两个方法map()submit()

map() 方法主要用来针对简化执行相同的方法,如下例:

# -*- coding: utf-8 -*-

from concurrent.futures import ProcessPoolExecutor

def fib(n, test_arg):
    if n > 30:
        raise Exception('can not > 30, now %s' % n)
    if n <= 2:
        return 1
    return fib(n-1, test_arg) + fib(n-2, test_arg)

def use_map():
    nums = [random.randint(0, 33) for _ in range(0, 10)]
    with ProcessPoolExecutor() as executor:
        try:
            results = executor.map(fib, nums, nums)
            for num, result in zip(nums, results):
                print('fib(%s) result is %s.' % (num, result))
        except Exception as e:
            print(e)

执行上例,输出如下,当num为30时抛出异常捕获后程序停止运行。

...
fib(19) result is 4181.
fib(11) result is 89.
fib(2) result is 1.
fib(5) result is 5.
fib(24) result is 46368.
fib(2) result is 1.
can not > 30, now 33

使用submit()方法。

# -*- coding: utf-8 -*-

from concurrent.futures import ProcessPoolExecutor, as_completed
import random

def fib(n, test_arg):
    if n > 30:
        raise Exception('can not > 30, now %s' % n)
    if n <= 2:
        return 1
    return fib(n-1, test_arg) + fib(n-2, test_arg)

def use_submit():
    nums = [random.randint(0, 33) for _ in range(0, 10)]
    with ProcessPoolExecutor() as executor:
        futures = {executor.submit(fib, n, n): n for n in nums}
        for f in as_completed(futures):
            try:
                print('fib(%s) result is %s.' % (futures[f], f.result()))
            except Exception as e:
                print(e)

执行上例,输出如下,可见当抛出异常并捕获后,继续向后输出,并没有向map()一样停止,除了as_completed(),还有wait()等方法。

fib(3) result is 2.
fib(15) result is 610.
can not > 30, now 31
fib(23) result is 28657.
fib(1) result is 1.
can not > 30, now 32
fib(14) result is 377.
fib(12) result is 144.
fib(26) result is 121393.
fib(29) result is 514229.

try/except的代码块包括as_completed()则不会继续输出,直接停止,暂时未找到原因。

def use_submit():
    nums = [random.randint(0, 33) for _ in range(0, 10)]
    with ProcessPoolExecutor() as executor:
        futures = {executor.submit(fib, n, n): n for n in nums}
        try:
            for f in as_completed(futures):
                print('fib(%s) result is %s.' % (futures[f], f.result()))
        except Exception as e:
            print(e)

其他:

  1. map()是根据传入的参数然后顺序输出的,as_completed()是按完成时间输出的,上面的例子不明显,可以参考Python并发编程之线程池/进程池,但都跟max_workers 参数和方法执行时间挂钩。
import time
def test_sleep(n):
    time.sleep(n)
    return True
def use_submit():
    nums = [3, 2, 1, 3]
    with ProcessPoolExecutor(max_workers=3) as executor:
        futures = {executor.submit(test_sleep, n): n for n in nums}
        for f in as_completed(futures):
            try:
                print('%s result is %s.' % (futures[f], f.result()))
            except Exception as e:
                print(e)
def use_map():
    nums = [3, 2, 1, 3]
    with ProcessPoolExecutor(max_workers=3) as executor:
        try:
            results = executor.map(test_sleep, nums)
            for num, result in zip(nums, results):
                print('%s result is %s.' % (num, result))
        except Exception as e:
            print(e)

use_submit() 输出如下,耗时3+1=4s,且完成一个输出一个,指定max_workers=3,第一个耗时1s的完成后就会执行第四个耗时3s的任务。

1 result is True.
2 result is True.
3 result is True.
3 result is True.

use_map() 输出如下,同样是耗时3+1=4s,但是是按传入参数顺序输入,因为指定max_workers=3,所以前三个是在耗时3s后一起输出的,第四个在耗时4s后再输出。

3 result is True.
2 result is True.
1 result is True.
3 result is True.
  1. 阅读部分map()源码。
def map(self, fn, *iterables, timeout=None, chunksize=1):
        """Returns an iterator equivalent to map(fn, iter).

        Args:
            fn: A callable that will take as many arguments as there are
                passed iterables.
            timeout: The maximum number of seconds to wait. If None, then there
                is no limit on the wait time.
            chunksize: The size of the chunks the iterable will be broken into
                before being passed to a child process. This argument is only
                used by ProcessPoolExecutor; it is ignored by
                ThreadPoolExecutor.

        Returns:
            An iterator equivalent to: map(func, *iterables) but the calls may
            be evaluated out-of-order.

        Raises:
            TimeoutError: If the entire result iterator could not be generated
                before the given timeout.
            Exception: If fn(*args) raises for any values.
        """
        if timeout is not None:
            end_time = timeout + time.time()

        fs = [self.submit(fn, *args) for args in zip(*iterables)]

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        def result_iterator():
            try:
                for future in fs:
                    if timeout is None:
                        yield future.result()
                    else:
                        yield future.result(end_time - time.time())
            finally:
                for future in fs:
                    future.cancel()
        return result_iterator()

fs存放了submit()后返回的future实例,是按传入的参数顺序排序的,返回了result_iterator()。至于为什么会按max_workers数一组返回输出,暂时不清楚。

  1. as_completed()源码,理解略有困难。
  2. ProcessExecutorPool()的实现:
    理解Python的PoolExecutor_第1张图片
    process.png

我们结合源码和上面的数据流分析一下:
executor.map会创建多个_WorkItem对象(ps. 实际上是执行了多次submit()),每个对象都传入了新创建的一个Future对象。
把每个_WorkItem对象然后放进一个叫做「Work Items」的dict中,键是不同的「Work Ids」。
创建一个管理「Work Ids」队列的线程「Local worker thread」,它能做2件事:
从「Work Ids」队列中获取Work Id, 通过「Work Items」找到对应的_WorkItem。如果这个Item被取消了,就从「Work Items」里面把它删掉,否则重新打包成一个_CallItem放入「Call Q」这个队列。executor的那些进程会从队列中取_CallItem执行,并把结果封装成_ResultItems放入「Result Q」队列中。
从「Result Q」队列中获取_ResultItems,然后从「Work Items」更新对应的Future对象并删掉入口。

  1. 简单分析submit()
    def submit(self, fn, *args, **kwargs):
        with self._shutdown_lock:
            if self._broken:
                raise BrokenProcessPool('A child process terminated '
                    'abruptly, the process pool is not usable anymore')
            if self._shutdown_thread:
                raise RuntimeError('cannot schedule new futures after shutdown')

            f = _base.Future()
            w = _WorkItem(f, fn, args, kwargs)

            self._pending_work_items[self._queue_count] = w
            self._work_ids.put(self._queue_count)
            self._queue_count += 1
            # Wake up queue management thread
            self._result_queue.put(None)

            self._start_queue_management_thread()
            return f
  • 创建Future()实例f,和_WorkItem()实例w
  • _pending_work_items即上述所说的Work Items字典,key为_queue_count,初始化为0;value为w。并将_queue_count添加到_work_ids队列中。
  • Wake up queue management thread,即唤醒上述图中的Local Work Thread
def _start_queue_management_thread(self):
       # When the executor gets lost, the weakref callback will wake up
       # the queue management thread.
       def weakref_cb(_, q=self._result_queue):
           q.put(None)
       if self._queue_management_thread is None:
           # Start the processes so that their sentinels are known.
           self._adjust_process_count()
           self._queue_management_thread = threading.Thread(
                   target=_queue_management_worker,
                   args=(weakref.ref(self, weakref_cb),
                         self._processes,
                         self._pending_work_items,
                         self._work_ids,
                         self._call_queue,
                         self._result_queue))
           self._queue_management_thread.daemon = True
           self._queue_management_thread.start()
           _threads_queues[self._queue_management_thread] = self._result_queue

   def _adjust_process_count(self):
       for _ in range(len(self._processes), self._max_workers):
           p = multiprocessing.Process(
                   target=_process_worker,
                   args=(self._call_queue,
                         self._result_queue))
           p.start()
           self._processes[p.pid] = p
  • _adjust_process_count()开启max_wokers个进程,执行_process_worker()
  • 开启_queue_management_thread()线程,即Local Worker Thread。
  • _queue_management_thread()线程中将调用_add_call_item_to_queue()_CallItem置于call_queue,并删除引用等操作,该方法理解有困难。
def _process_worker(call_queue, result_queue):
   """Evaluates calls from call_queue and places the results in result_queue.

   This worker is run in a separate process.

   Args:
       call_queue: A multiprocessing.Queue of _CallItems that will be read and
           evaluated by the worker.
       result_queue: A multiprocessing.Queue of _ResultItems that will written
           to by the worker.
       shutdown: A multiprocessing.Event that will be set as a signal to the
           worker that it should exit when call_queue is empty.
   """
   while True:
       call_item = call_queue.get(block=True)
       if call_item is None:
           # Wake up queue management thread
           result_queue.put(os.getpid())
           return
       try:
           r = call_item.fn(*call_item.args, **call_item.kwargs)
       except BaseException as e:
           exc = _ExceptionWithTraceback(e, e.__traceback__)
           result_queue.put(_ResultItem(call_item.work_id, exception=exc))
       else:
           result_queue.put(_ResultItem(call_item.work_id,
                                        result=r))
  • 执行任务进程,从call_queue中获取_CallItem并调用其fn,将结果放进result_queue中。

你可能感兴趣的:(理解Python的PoolExecutor)