主要内容:
1、QR分解定义
2、QR分解求法
3、QR分解与最小二乘
4、Matlab实现
定义:
实数矩阵 A 的 QR 分解是把 A 分解为Q、R,这里的 Q 是正交矩阵(意味着 QTQ = I)而 R 是上三角矩阵。类似的,我们可以定义 A 的 QL, RQ 和 LQ 分解。
更一般的说,我们可以因数分解复数 m×n 矩阵(有着 m ≥ n)为 m×n 酉矩阵(在 Q∗Q = I 的意义上)和n×n 上三角矩阵的乘积。
如果 A 是非奇异的,则这个因数分解为是唯一,当我们要求 R 的对角是正数的时候。
QR分解的实际计算有很多方法,例如Givens旋转、Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。
最小二乘:
对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ 中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点 {(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
最小二乘的矩阵形式:Ax=b,其中A为nxk的矩阵,x为kx1的列向量,b为nx1的列向量。如果n>k(方程的个数大于未知量的个数),这个方程系统称为Over Determined System,如果n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。
最小二乘与QR分解:
正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算 min ||Ax-b||,解出其中的x。比较直观的做法是求解A'Ax=A'b,但通常比较低效。其中一种常见的解法是对A进行QR分解(A=QR),其中Q是nxk正交矩阵(Orthonormal Matrix),R是kxk上三角矩阵(Upper Triangular Matrix),然后min ||Ax-b|| = min ||QRx-b|| = min ||Rx-Q'b||,用MATLAB命令x=R\(Q'*b)可解得x。
最小二乘的Matlab实现:
① 一次函数使用polyfit(x,y,1)
②多项式函数使用 polyfit(x,y,n),n为次数
拟合曲线
x=[0.5,1.0,1.5,2.0,2.5,3.0],
y=[1.75,2.45,3.81,4.80,7.00,8.60]。
解:MATLAB程序如下:
x=[0.5,1.0,1.5,2.0,2.5,3.0];
y=[1.75,2.45,3.81,4.80,7.00,8.60];
p=polyfit(x,y,2)
x1=0.5:0.5:3.0;
y1=polyval(p,x1);
plot(x,y,'*r',x1,y1,'-b')
计算结果为:
p =0.5614 0.8287 1.1560
即所得多项式为y=0.5614x^2+0.8287x+1.15560
③非线性函数使用 lsqcurvefit(fun,x0,x,y)
四、QR分解的Matlab实现
此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为n*m,则矩阵Q大小为n*m,矩阵R大小为m*m。
五、参考文献:
http://www.360doc.com/content/13/1015/09/12712639_321543226.shtml