You can Solve a Geometry Problem too
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8693 Accepted Submission(s): 4232
Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.
Note:
You can assume that two segments would not intersect at more than one point.
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
Output
For each case, print the number of intersections, and one line one case.
Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
Sample Output
Author
lcy
仅仅用到了相交线段模板
1 #include <iostream>
2 #include <cmath>
3
4 using namespace std;
5
6 struct POINT
7 {
8 double x;
9 double y;
10 };
11 struct LINESEG
12 {
13 POINT s;
14 POINT e;
15 };
16
17 double multiply(POINT a,POINT b,POINT c)
18 {
19 return ((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
20 }
21 bool intersect(LINESEG u,LINESEG v)
22 {
23 return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
24 (max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
25 (max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
26 (max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
27 (multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
28 (multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
29 }
30 int main()
31 {
32
33 int N;
34 while(cin>>N&&N)
35 {
36 LINESEG A[101];
37 int count=0;
38 for(int i=0;i<N;i++)
39 {
40 cin>>A[i].s.x>>A[i].s.y>>A[i].e.x>>A[i].e.y;
41 }
42 for(int i=0;i<N;i++)
43 for(int j=0;j<N;j++)
44 if(intersect(A[i],A[j])&&i!=j)
45 count++;
46 cout<<count/2<<endl;
47 }
48 return 0;
49 }