vue-next 源码阅读笔记: 响应原理先分析MobX

vue-nuxt 新特性 Vue Function API

我们先看一下列子:




setup 做了什么

这段代码看起来是不是很熟悉,如果你写过 react 的话,如果你用过 MobX 的话

MobX 是怎么写的:

import { observable, autorun, computed } from 'mobx'

const todoStore = observable({
  /* 一些观察的状态 */
  todos: [],

  /* 推导值 */
  get completedCount() {
    return this.todos.filter(todo => todo.completed).length
  }
})
/* 推导值 */
const finished = computed(() => {
  return todoStore.todos.filter(todo => todo.completed).length
})
/* 观察状态改变的函数 */
autorun(function() {
  console.log('Completed %d of %d items', finished, todoStore.all)
})

/* ..以及一些改变状态的动作 */
todoStore.todos[0] = {
  title: 'Take a walk',
  completed: false
}
// -> 同步打印 'Completed 0 of 1 items'

todoStore.todos[0].completed = true
// -> 同步打印 'Completed 1 of 1 items'

是不是感觉很相识?
Vue 对比 MobX

  • value === observable
  • computed === computed
  • watch === autorun

我的天!
Vue 抄袭了 MobX!
石锤了!!!(手动狗头)

其实两者关于响应实现哲学其实大体是一致的,但是代码细节的实现就天差地别了。

主要实现原理:

  • 观察者模式
  • 拦截属性的设置和获取

观察者模式(dep)

vue-next 源码阅读笔记: 响应原理先分析MobX_第1张图片
event-proxy.png

一个简单的观察者模式

const dep = {
  event: {},
  on(key, fn) {
    this.event[key] = this.event[key] || []
    this.event[key].push(fn)
  },
  emit(key, args) {
    if (!this.event[key]) return
    this.event[key].forEach(fn => fn(args))
  }
}

dep.on('print', args => console.log(args))
dep.emit('print', 'hello world')
// output: hello world

拦截器(Proxy)

const px = {}
let val = ''
Object.defineProperty(px, 'proxy', {
  get() {
    console.log('get', val)
    // dep.on('proxy', fn)
    return val
  },
  set(args) {
    console.log('set', args)
    // dep.emit('proxy')
    val = args
  }
})
px.proxy = 1
// output set 1
console.log(px.proxy)
// output get 1
// output 1

只需要将两者简单结合就可以实现一个监听属性变化。

const printFn = () => console.log('emit print key')
const handler = {
  set(target, key, value, receiver) {
    const result = Reflect.set(target, key, value, receiver)
    // dep.emit(key, target) 触发事件
    if (key === 'key') dep.emit('key')
    return result
  },
  get(target, key, value, receiver) {
    if (key === 'key') {
      //注册事件
      dep.on(key, printFn)
    }
    return Reflect.get(target, key, value, receiver)
  }
}
// 递归封装Proxy
const observable = obj => {
  Object.entries(obj).forEach(([key, value]) => {
    if (typeof value !== 'object' || value === null) return
    obj[key] = observable(value)
  })
  return new Proxy(obj, handler)
}

const obj = observable({})
obj.key // 运行get方法注册  printFn
obj.key = 'print' // 运行set触发事件  执行 printFn
// output 'emit print key'

依赖收集

会看上面的代码,注册的方法(printFn)是直接写死的,但是实际场景,我们需要有一个注册器,就像 autoRun。

const printFn = () => console.log('emit print key')
// 非常简单
const autoRun = (key, fn) => {
  dep.on(key, fn)
}
// 简单修改一下我们的代理器
const handler = {
  set(target, key, value, receiver) {
    const result = Reflect.set(target, key, value, receiver)
    dep.emit(key)
    return result
  },
  get(target, key, value, receiver) {
    return Reflect.get(target, key, value, receiver)
  }
}
// 递归封装Proxy
const observable = obj => {
  Object.entries(obj).forEach(([key, value]) => {
    if (typeof value !== 'object' || value === null) return
    obj[key] = observable(value)
  })
  return new Proxy(obj, handler)
}
const obj = observable({})
autoRun('key', printFn)
obj.key = 'print' // 运行set触发事件 autoRun  执行 printFn
// output emit print key

这时候你可能就会问,这边注册的方式还是通过key来完成的啊,说好的依赖收集呢?说好的自动注册呢?

当我们运行一段代码时,我们是如何得知这段代码里面用了什么变量?用了几次变量?怎么将方法和和变量进行关联?
比如:想一想如何将ob.nameautoRun 的方法进行关联

const ob = observable({})
autoRun(() => {
  console.log(`print ${ob.name}`)
})
ob.name = 'hello world'
// print hello world

依赖收集原理: 通过全局变量和运行 (敲黑板)
我们将上面的代码改一改。

// 全局唯一的 id
let obId = 0
const dep = {
  event: {},
  on(key, fn) {
    if (!this.event[key]) {
      this.event[key] = new Set()
    }
    this.event[key].add(fn)
  },
  emit(key, args) {
    const fns = new WeakSet()
    const events = this.event[key]
    if (!events) return
    events.forEach(fn => {
      if (fns.has(fn)) return
      fns.add(fn)
      fn(args)
    })
  }
}

// 全局变量
let pendingDerivation = null

// 依赖收集
const autoRun = fn => {
  pendingDerivation = fn
  fn()
  pendingDerivation = null
}

const handler = {
  set(target, key, value, receiver) {
    const result = Reflect.set(target, key, value, receiver)
    dep.emit(`${target.__obId}${key}`)
    return result
  },
  get(target, key, value, receiver) {
    if (target && key && pendingDerivation) {
      dep.on(`${target.__obId}${key}`, pendingDerivation)
    }
    return Reflect.get(target, key, value, receiver)
  }
}

const observable = obj => {
  obj.__obId = `$$obj${++obId}__`
  Object.entries(obj).forEach(([key, value]) => {
    if (typeof value !== 'object' || value === null) return
    obj[key] = observable(value)
  })
  return new Proxy(obj, handler)
}

纵观上面的代码,其实关键的修改大概就两处:

// 全局变量
let pendingDerivation = null
// 收集依赖  step 1
const autoRun = fn => {
  pendingDerivation = fn
  fn()
  pendingDerivation = null
}
// 收集依赖  step 2
const handler = {
  get(target, key, value, receiver) {
    if (target && key && pendingDerivation) {
      dep.on(`${target.__obId}${key}`, pendingDerivation)
    }
    return Reflect.get(target, key, value, receiver)
  }
}

原理:
就是通过全局变量和立即执行一次,进行变量的确认和观察者模式里的事件注册
我们回顾一下 MobX 的描述:

当使用 autorun 时,所提供的函数总是立即被触发一次,然后每次它的依赖关系改变时会再次被触发。 --MobX

在执行 autoRun 的 fn 的时候,就会触发到 Proxy 里的各个属性的 get 方法,这时候通过全局的变量将属性和方法进行映射。

computed:对象原始值(Symbol.toPrimitive)

其实 MobX 关于 computed 的实现还是通过事件来触发的,但是在阅读源码的时候,突发奇想,是不是也可以通过Symbol.toPrimitive来实现。

const computed = fn => {
  return {
    _computed: fn,
    [Symbol.toPrimitive]() {
      return this._computed()
    }
  }
}

代码很简单,通过 computed 封装一个方法,然后直接返回一个对象,这个对象通过复写Symbol.toPrimitive,实现方法的缓存,然后在 get 的时候进行运行。

完整代码

代码只是对主要逻辑进行梳理,缺乏代码细节

let obId = 0
let pendingDerivation = null

const dep = {
  event: {},
  on(key, fn) {
    if (!this.event[key]) {
      this.event[key] = new Set()
    }
    this.event[key].add(fn)
  },
  emit(key, args) {
    const fns = new WeakSet()
    const events = this.event[key]
    if (!events) return
    events.forEach(fn => {
      if (fns.has(fn)) return
      fns.add(fn)
      fn(args)
    })
  }
}

const autoRun = fn => {
  pendingDerivation = fn
  fn()
  pendingDerivation = null
}

const handler = {
  set(target, key, value, receiver) {
    const result = Reflect.set(target, key, value, receiver)
    dep.emit(target.__obId + key)
    return result
  },
  get(target, key, value, receiver) {
    if (target && key && pendingDerivation) {
      dep.on(target.__obId + key, pendingDerivation)
    }
    return Reflect.get(target, key, value, receiver)
  }
}

const observable = obj => {
  obj.__obId = `__obId${++obId}__`
  Object.entries(obj).forEach(([key, value]) => {
    if (typeof value !== 'object' || value === null) return
    obj[key] = observable(value)
  })
  return new Proxy(obj, handler)
}

const computed = fn => {
  return {
    computed: fn,
    [Symbol.toPrimitive]() {
      return this.computed()
    }
  }
}

// demo
const todoObs = observable({
  todo: [],
  get all() {
    return this.todo.length
  }
})

const compuFinish = computed(() => {
  return todoObs.todo.filter(t => t.finished).length
})

const print = () => {
  const all = todoObs.all
  console.log(`print: finish ${compuFinish}/${all}`)
}

autoRun(print)

todoObs.todo.push({
  finished: false
})

todoObs.todo.push({
  finished: true
})

// print: finish 0/0
// print: finish 0/1
// print: finish 1/2

是不是对于 MobX 有了简单的了解。接下来我们分析一下 Vue-next 的实现方式

恩?

下回再见!

如果有的话。

你可能感兴趣的:(vue-next 源码阅读笔记: 响应原理先分析MobX)