Flink1.8 集群搭建完全指南(4):Hadoop完全分布式

前面的准备工作做好之后,我们来搭建带Kerberos和SASL的完全分布式的Hadoop集群。

1. 集群环境准备

我们现在有3台服务器,服务器列表如下:

hostname ip 作用
master 10.16.195.254 NameNode, DataNode, ResourceManager, JobManager
slave1 10.16.196.1 DataNode, JobManager
slave2 10.16.196.5 DataNode, JobManager
1.1 修改hosts文件

在每台机器上执行以下命令获取hostname:

$ hostname

将每台机器的hostname和ip,添加到所有机器的/etc/hosts文件中,所有机器的/etc/hsots文件最终如以下所示:

127.0.0.1 localhost.localdomain localhost
127.0.0.1 localhost4.localdomain4 localhost4

::1 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6

10.16.195.254 master
10.16.196.1 slave1
10.16.196.5 slave2

在任意一台机器,通过域名可以ping到对应的ip地址,则配置成功。

1.2 配置JDK环境
  • 通过yum安装JDK1.8版本的环境,命令如下:
$ yum install java-1.8.0-openjdk*
  • 获取java的安装目录:
$ whereis java
java: /usr/bin/java /usr/lib/java /etc/java /usr/share/java /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64/bin/java /usr/share/man/man1/java.1.gz
$ ls -l /usr/lib/jvm/
total 0
lrwxrwxrwx 1 root root  26 Dec 20  2018 java -> /etc/alternatives/java_sdk
lrwxrwxrwx 1 root root  32 Dec 20  2018 java-1.8.0 -> /etc/alternatives/java_sdk_1.8.0
lrwxrwxrwx 1 root root  40 Dec 20  2018 java-1.8.0-openjdk -> /etc/alternatives/java_sdk_1.8.0_openjdk
drwxr-xr-x 9 root root 101 Dec 20  2018 java-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64
drwxr-xr-x 9 root root 101 Dec 20  2018 java-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64-debug
lrwxrwxrwx 1 root root  34 Dec 20  2018 java-openjdk -> /etc/alternatives/java_sdk_openjdk
lrwxrwxrwx 1 root root  21 Dec 20  2018 jre -> /etc/alternatives/jre
lrwxrwxrwx 1 root root  27 Dec 20  2018 jre-1.8.0 -> /etc/alternatives/jre_1.8.0
lrwxrwxrwx 1 root root  35 Dec 20  2018 jre-1.8.0-openjdk -> /etc/alternatives/jre_1.8.0_openjdk
lrwxrwxrwx 1 root root  51 Dec 20  2018 jre-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64 -> java-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64/jre
lrwxrwxrwx 1 root root  57 Dec 20  2018 jre-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64-debug -> java-1.8.0-openjdk-1.8.0.111-1.b15.el7_2.x86_64-debug/jre
lrwxrwxrwx 1 root root  29 Dec 20  2018 jre-openjdk -> /etc/alternatives/jre_openjdk
  • 配置JAVA_HOME等环境变量
    打开/etc/profile文件,添加以下的内容:
export JAVA_HOME=/usr/lib/jvm/java-1.8.0
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
1.3 配置SSH免密登录

在每台机器上生成ssh公钥和私钥对,命令如下:

$ ssh-keygen -t rsa

生成好的公钥在/.ssh/id_rsa.pub文件中,将所有机器的公钥写入到每台机器的/.ssh/authorized_keys文件中,并设置authorized_keys文件的权限为600。authorized_keys文件的示例如下:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQD2pELeQD25P/Mu+eKmfwAN7hyrixm243YYiPLn4goFe8q/uI9cUKivYNg14bGCavta8fVE90x4WJysXEjMA7SWk5Ic3jS6gEoFhXQ1F0FISpv0eAamikWHASgQNrqY3KGaEm1dxR8lV3/lc0TWjv9QEO3wCw8zj7l4r8LQL0wIaEZ8NB8ElSRx3yFHl6FZE2XEiu/+j61q9U612WMNXqgvTMS8Z5zDujuSgO4mVSOVTyfkE5baIbeZGGKjdNT/4400KBa5k0Qs+VGBaEZs5FxtsmXqBdG/r6Aef7yZivFPNz0mXqFknp5OAafpe/cfPr3weqmCePbUBVOnDIAQzEfj master
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC5kUfv1h9fuWp/3xqEqlDcmrz0Bk2n0+/LLBeShtLpFn+/krF4az6BN5CAFCY5NBgebhfw/9AQSUmyrr9aUXkpi7664QweJsJAne4mxi9/lKkQi+2liV2mBVNly1ax8+tf6P3OKgSSiD+XSVzlr5StIQE9M/Cr67lELHjhV/rvY2ALEQXbZH666SWLL+KPkshLvtpRVqFQKUFPvn2cXBr+YShCBm7DasZcDAGg4XqlxCLaeyI4N+zsrrr/52cGHT/0yJKK42zJyZ2pyVN51rGDwQh0T+6AMEp2YJUo/o+2P9hD/HZTepmnCBef/UyUR6u0xgvBPK/QYvcgziFr/85P slave1
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCvUd0rjjGVz2umcWRMt3YHzxQBwIGdNo7QdXZcnILuTPqQ4PsIUTe+ULYrHcHlj+l6Z7XBO5ABd2BKks0Z8PR1eQyjY8yKv+P0LCe/fGKppsXzHvluexEe14aE95yI1aPguxAAqrLZ/NLhoQjoal2RvrGv6d/wLBPOdWx8DO2s2zbI5AuTawOyolSyOcSE5Mrgg3ahiYSs1OcopU8/pex3rOolfZVNbyyOjipL/QXdkcLLXQ0rpD41DzJzzgkNPmaG41rdcqjzFqLpE5O1qdFetfwcg1ZBniR3EdajGyd7jcccqXg2fWC/7+UarC4Dd7Yl9sup7zkExw/QhPiMY8fh slave2

完成每台机器的配置后,可以通过ssh直接登录其他机器。

2. 配置Hadoop

2.1 下载Hadoop的安装包

在Hadoop的下载页选择2.8.5版本的二进制文件,并下载在master节点的/data目录中,http://hadoop.apache.org/releases.html

下载完成后,将hadoop的tar.gz包scp到其他slave节点的相同目录下,并在所有机器上解压缩安装包。

$ wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.8.5/hadoop-2.8.5.tar.gz
$ scp hadoop-2.8.5.tar.gz root@slave1:/data
$ scp hadoop-2.8.5.tar.gz root@slave2:/data
$ tar -xvf hadoop-2.8.5.tar.gz
2.2 Hadoop的环境变量配置

在所有机器的/etc/profile文件中添加以下的内容:

export HADOOP_HOME=/data/hadoop-2.8.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
2.3 配置kerberos账号

Hadoop中通常会使用三个kerberos账号:hdfs,yarn和HTTP,添加账号的命令如下:

$ kadmin.local -q "addprinc -randkey hdfs/[email protected]"
$ kadmin.local -q "addprinc -randkey yarn/[email protected]"
$ kadmin.local -q "addprinc -randkey HTTP/[email protected]"

生成每个账号的keytab文件:

$ kadmin.local -q "xst -k hdfs.keytab hdfs/[email protected]"
$ kadmin.local -q "xst -k yarn.keytab yarn/[email protected]"
$ kadmin.local -q "xst -k HTTP.keytab HTTP/[email protected]"

将三个keytab文件合并为一个:

$ ktutil
ktutil:  rkt hdfs.keytab
ktutil:  rkt yarn.keytab
ktutil:  rkt HTTP.keytab
ktutil:  wkt hadoop.keytab
ktutil:  q
2.4 分发keytab文件并登录

将此文件移动到hadoop目录的etc/hadoop目录下,并scp到其他slave机器的相同目录:

$ mv hadoop.keytab /data/hadoop-2.8.5/etc/hadoop/
$ scp /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab root@slave1:/data/hadoop-2.8.5/etc/hadoop
$ scp /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab root@slave2:/data/hadoop-2.8.5/etc/hadoop

配置crontab每天登录一次:

$ crontab -l
0  0  *  *  *   kinit -k -t /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab hdfs/[email protected]
0  0  *  *  *   kinit -k -t /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab yarn/[email protected]
0  0  *  *  *   kinit -k -t /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab HTTP/[email protected]
2.5 修改Hadoop配置文件

配置文件的路径在/data/hadoop-2.8.5/etc/hadoop下,

  • slaves
master
slave1
slave2
  • core-site.xml

   
      fs.defaultFS
      hdfs://localhost:9000
   
   
      hadoop.security.authentication
      kerberos
   
   
      hadoop.security.authorization
      true
   
   
      fs.permissions.umask-mode
      027
   

  • mapred-site.xml

   
      mapreduce.framework.name
      yarn
   

  • yarn-site.xml

   
      yarn.resourcemanager.hostname
      ads-data-web-online012-bjdxt9p
   
   
      yarn.nodemanager.aux-services
      mapreduce_shuffle
   
   
      yarn.resourcemanager.keytab
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      yarn.resourcemanager.principal
      yarn/[email protected]
   
   
      yarn.nodemanager.keytab
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      yarn.nodemanager.principal
      yarn/[email protected]
   
   
      yarn.nodemanager.resource.memory-mb
      16384
   
   
      yarn.scheduler.minimum-allocation-mb
      1024
   
   
      yarn.scheduler.maximum-allocation-mb
      16384
   
   
      yarn.nodemanager.vmem-check-enabled
      false
   

  • hdfs-site.xml

   
      dfs.namenode.secondary.http-address
      10.16.195.254:50090
   
   
      dfs.replication
      2
   
   
      dfs.namenode.name.dir
      file:/data/hadoop/dfs/name
   
   
      dfs.datanode.data.dir
      file:/data/hadoop/dfs/data
   
   
      dfs.datanode.max.xcievers
      4096
      max number of file which can be opened in a datanode
   
   
      dfs.block.access.token.enable
      true
   
   
      dfs.namenode.keytab.file
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.namenode.kerberos.principal
      hdfs/[email protected]
   
   
      dfs.namenode.kerberos.https.principal
      HTTP/[email protected]
   
   
      dfs.datanode.address
      0.0.0.0:1034
   
   
      dfs.datanode.http.address
      0.0.0.0:1036
   
   
      dfs.datanode.keytab.file
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.datanode.kerberos.principal
      hdfs/[email protected]
   
   
      dfs.datanode.kerberos.https.principal
      HTTP/[email protected]
   
   
   
      dfs.http.policy
      HTTPS_ONLY
   
   
      dfs.data.transfer.protection
      integrity
   
   
   
      dfs.journalnode.keytab.file
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.journalnode.kerberos.principal
      hdfs/[email protected]
   
   
      dfs.journalnode.kerberos.internal.spnego.principal
      HTTP/[email protected]
   
   
   
      dfs.webhdfs.enabled
      true
   
   
      dfs.web.authentication.kerberos.principal
      HTTP/[email protected]
   
   
      dfs.web.authentication.kerberos.keytab
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.datanode.data.dir.perm
      700
   
   
      dfs.nfs.kerberos.principal
      hdfs/[email protected]
   
   
      dfs.nfs.keytab.file
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.secondary.https.address
      10.16.195.254:50495
   
   
      dfs.secondary.https.port
      50495
   
   
      dfs.secondary.namenode.keytab.file
      /data/hadoop-2.8.5/etc/hadoop/hadoop.keytab
   
   
      dfs.secondary.namenode.kerberos.principal
      hdfs/[email protected]
   
   
      dfs.secondary.namenode.kerberos.https.principal
      HTTP/[email protected]
   

  • 分别hadoop配置文件到其他机器
$ scp /data/hadoop-2.8.5/etc/hadoop/* root@slave1:/data/hadoop-2.8.5/etc/hadoop
$ scp /data/hadoop-2.8.5/etc/hadoop/* root@slave2:/data/hadoop-2.8.5/etc/hadoop
2.6 NameNode格式化
$ hdfs namenode -format
19/06/30 22:23:45 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   user = root
STARTUP_MSG:   host = master/127.0.0.1
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 2.8.5
...
19/06/30 22:23:46 INFO util.ExitUtil: Exiting with status 0
19/06/30 22:23:46 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at master/127.0.0.1

3 启动Hadoop集群

3.1 启动HDFS集群
$ start-dfs.sh
$ jps
19282 DataNode
28324 Jps
19480 SecondaryNameNode
18943 NameNode

访问NameNode UI:https://10.16.195.254:50470/

3.2 启动Yarn集群
$ start-yarn.sh
$ jps
21088 NodeManager
19282 DataNode
28324 Jps
19480 SecondaryNameNode
18943 NameNode
20959 ResourceManager

访问Yarn UI:http://10.16.195.254:8088/

至此Hadoop完全分布式的集群搭建完成。

你可能感兴趣的:(Flink1.8 集群搭建完全指南(4):Hadoop完全分布式)