Reinforcement Learning 第二周课程笔记

Intro to Burlap

In this introduction lecture to Burlap, I learned how to use BURLAP to setup a MDP.

Steps includes:

  1. setup domain (using GraphDefinedDomain)
  2. setup nodes (states)
  3. setup actions
  4. initialize state
  5. setup reward function, termination function, hashFactory
  6. run Value Iteration
  7. and get the optimal first action.

See the sample code below and readBurLAP documentation to understand the code.

Reinforcement Learning 第二周课程笔记_第1张图片
First MDP problem
import burlap.behavior.singleagent.planning.stochastic.valueiteration.ValueIteration;
import burlap.behavior.statehashing.DiscreteStateHashFactory;
import burlap.domain.singleagent.graphdefined.GraphDefinedDomain;
import burlap.oomdp.auxiliary.DomainGenerator;
import burlap.oomdp.auxiliary.common.NullTermination;
import burlap.oomdp.core.*;
import burlap.oomdp.singleagent.GroundedAction;
import burlap.oomdp.singleagent.RewardFunction;

public class FirstMDP {
        
    DomainGenerator             dg;
    Domain                      domain;
    State                       initState;
    RewardFunction              rf;
    TerminalFunction            tf;
    DiscreteStateHashFactory    hashFactory;
    int                         numStates;

    public FirstMDP(double p1, double p2, double p3, double p4) {
        int numStates = 6;
        this.dg = new GraphDefinedDomain(numStates);
        
        //actions from initial state 0
        ((GraphDefinedDomain) this.dg).setTransition(0, 0, 1, 1.);
        ((GraphDefinedDomain) this.dg).setTransition(0, 1, 2, 1.);
        ((GraphDefinedDomain) this.dg).setTransition(0, 2, 3, 1.);
        
        //transitions from action "a" outcome state
        ((GraphDefinedDomain) this.dg).setTransition(1, 0, 1, 1.);

        //transitions from action "b" outcome state
        ((GraphDefinedDomain) this.dg).setTransition(2, 0, 4, 1.);
        ((GraphDefinedDomain) this.dg).setTransition(4, 0, 2, 1.);

        //transitions from action "c" outcome state
        ((GraphDefinedDomain) this.dg).setTransition(3, 0, 5, 1.);
        ((GraphDefinedDomain) this.dg).setTransition(5, 0, 5, 1.);
        
        this.domain = this.dg.generateDomain();
        this.initState = GraphDefinedDomain.getState(this.domain,0);
        this.rf = new FourParamRF(p1,p2,p3,p4);
        this.tf = new NullTermination();
        this.hashFactory = new DiscreteStateHashFactory();
    }
    
    public static class FourParamRF implements RewardFunction {
        double p1;
        double p2;
        double p3;
        double p4;
        
        public FourParamRF(double p1, double p2, double p3, double p4) {
            this.p1 = p1;
            this.p2 = p2;
            this.p3 = p3;
            this.p4 = p4;
        }
        
        @Override
        public double reward(State s, GroundedAction a, State sprime) { 
            int sid = GraphDefinedDomain.getNodeId(s);
            double r;
            
            if( sid == 0 || sid == 3 ) { // initial state or c1
                r = 0;
            }
            else if( sid == 1 ) { // a
                r = this.p1;
            }
            else if( sid == 2 ) { // b1
                r = this.p2;
            }
            else if( sid == 4 ) { // b2
                r = this.p3;
            }
            else if( sid == 5 ) { // c2
                r = this.p4;
            }
            else {
                throw new RuntimeException("Unknown state: " + sid);
            }
            
            return r;
        }
    }
    
    private ValueIteration computeValue(double gamma) {
        double maxDelta = 0.0001;
        int maxIterations = 1000;
        ValueIteration vi = new ValueIteration(this.domain, this.rf, this.tf, gamma, 
                this.hashFactory, maxDelta, maxIterations);
        vi.planFromState(this.initState);
        return vi;
    }
    
    public String bestFirstAction(double gamma) {
        double V1, V2, V3;
        String best;
        best = "";
        ValueIteration vi = computeValue(gamma);
        

        V1 = vi.value( GraphDefinedDomain.getState(this.domain, 1) );
        V2 = vi.value( GraphDefinedDomain.getState(this.domain, 2) );    
        V3 = vi.value( GraphDefinedDomain.getState(this.domain, 3) );
             
        
        if (V1 >= V2 && V1 >= V3){
            best = "action a";
        } else if (V2 >= V3 && V2> V1){
            best = "action b";
        } else if (V3> V2 && V3 > V1){ 
            best = "action c";
        }
        
        return best;
        // Return "action a" if a is the best action based on the discount factor given.
        // Return "action b" if b is the best action based on the discount factor given.
        // Return "action c" if c is the best action based on the discount factor given.
        // If there is a tie between actions, give preference to the earlier action in the alphabet:
        //   e.g., if action a and action c are equally good, return "action a".
    }
    
    public static void main(String[] args) {
        double p1 = 5.;
        double p2 = 6.;
        double p3 = 3.;
        double p4 = 7.;
        FirstMDP mdp = new FirstMDP(p1,p2,p3,p4);
        
        double gamma = 0.6;
        System.out.println("Best initial action: " + mdp.bestFirstAction(gamma));
    }
}

Reinforcement Learning 第二周课程笔记_第2张图片
Second MDP Problem

The solution of this second problem will not be posted here since it's the quiz of the lecture.

2015-08-26 初稿

你可能感兴趣的:(Reinforcement Learning 第二周课程笔记)