此篇博客所有源码均来自JDK 1.8
HashMap是我们用得非常频繁的一个集合,但是由于它是非线程安全的,在多线程环境下,put操作是有可能产生死循环的,导致CPU利用率接近100%。为了解决该问题,提供了Hashtable和Collections.synchronizedMap(hashMap)两种解决方案,但是这两种方案都是对读写加锁,独占式,一个线程在读时其他线程必须等待,吞吐量较低,性能较为低下。故而Doug Lea大神给我们提供了高性能的线程安全HashMap:ConcurrentHashMap。
ConcurrentHashMap的实现
ConcurrentHashMap作为Concurrent一族,其有着高效地并发操作,相比Hashtable的笨重,ConcurrentHashMap则更胜一筹了。
在1.8版本以前,ConcurrentHashMap采用分段锁的概念,使锁更加细化,但是1.8已经改变了这种思路,而是利用CAS+Synchronized来保证并发更新的安全,当然底层采用数组+链表+红黑树的存储结构。
关于1.7和1.8的区别请参考占小狼博客:谈谈ConcurrentHashMap1.7和1.8的不同实现:http://www.jianshu.com/p/e694f1e868ec
我们从如下几个部分全面了解ConcurrentHashMap在1.8中是如何实现的:
- 重要概念
- 重要内部类
- ConcurrentHashMap的初始化
- put操作
- get操作
- size操作
- 扩容
- 红黑树转换
重要概念
ConcurrentHashMap定义了如下几个常量:
// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
//
static final int MIN_TREEIFY_CAPACITY = 64;
//
private static final int MIN_TRANSFER_STRIDE = 16;
//
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED = -1;
// 树根节点的hash值
static final int TREEBIN = -2;
// ReservationNode的hash值
static final int RESERVED = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
上面是ConcurrentHashMap定义的常量,简单易懂,就不多阐述了。下面介绍ConcurrentHashMap几个很重要的概念。
- table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
- nextTable:扩容时新生成的数据,数组为table的两倍;
- Node:节点,保存key-value的数据结构;
- ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
- sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
- 负数代表正在进行初始化或扩容操作
- -1代表正在初始化
- -N 表示有N-1个线程正在进行扩容操作
- 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
重要内部类
为了实现ConcurrentHashMap,Doug Lea提供了许多内部类来进行辅助实现,如Node,TreeNode,TreeBin等等。下面我们就一起来看看ConcurrentHashMap几个重要的内部类。
Node
作为ConcurrentHashMap中最核心、最重要的内部类,Node担负着重要角色:key-value键值对。所有插入ConCurrentHashMap的中数据都将会包装在Node中。定义如下:
static class Node implements Map.Entry {
final int hash;
final K key;
volatile V val; //带有volatile,保证可见性
volatile Node next; //下一个节点的指针
Node(int hash, K key, V val, Node next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key + "=" + val; }
/** 不允许修改value的值 */
public final V setValue(V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(Object o) {
Object k, v, u; Map.Entry,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
/** 赋值get()方法 */
Node find(int h, Object k) {
Node e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
在Node内部类中,其属性value、next都是带有volatile的。同时其对value的setter方法进行了特殊处理,不允许直接调用其setter方法来修改value的值。最后Node还提供了find方法来赋值map.get()。
TreeNode
我们在学习HashMap的时候就知道,HashMap的核心数据结构就是链表。在ConcurrentHashMap中就不一样了,如果链表的数据过长是会转换为红黑树来处理。当它并不是直接转换,而是将这些链表的节点包装成TreeNode放在TreeBin对象中,然后由TreeBin完成红黑树的转换。所以TreeNode也必须是ConcurrentHashMap的一个核心类,其为树节点类,定义如下:
static final class TreeNode extends Node {
TreeNode parent; // red-black tree links
TreeNode left;
TreeNode right;
TreeNode prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node next,
TreeNode parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node find(int h, Object k) {
return findTreeNode(h, k, null);
}
//查找hash为h,key为k的节点
final TreeNode findTreeNode(int h, Object k, Class> kc) {
if (k != null) {
TreeNode p = this;
do {
int ph, dir; K pk; TreeNode q;
TreeNode pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
源码展示TreeNode继承Node,且提供了findTreeNode用来查找查找hash为h,key为k的节点。
TreeBin
该类并不负责key-value的键值对包装,它用于在链表转换为红黑树时包装TreeNode节点,也就是说ConcurrentHashMap红黑树存放是TreeBin,不是TreeNode。该类封装了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。由于TreeBin的代码太长我们这里只展示构造方法(构造方法就是构造红黑树的过程):
static final class TreeBin extends Node {
TreeNode root;
volatile TreeNode first;
volatile Thread waiter;
volatile int lockState;
static final int WRITER = 1; // set while holding write lock
static final int WAITER = 2; // set when waiting for write lock
static final int READER = 4; // increment value for setting read lock
TreeBin(TreeNode b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode r = null;
for (TreeNode x = b, next; x != null; x = next) {
next = (TreeNode) x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
} else {
K k = x.key;
int h = x.hash;
Class> kc = null;
for (TreeNode p = r; ; ) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
}
/** 省略很多代码 */
}
通过构造方法是不是发现了部分端倪,构造方法就是在构造一个红黑树的过程。
ForwardingNode
这是一个真正的辅助类,该类仅仅只存活在ConcurrentHashMap扩容操作时。只是一个标志节点,并且指向nextTable,它提供find方法而已。该类也是集成Node节点,其hash为-1,key、value、next均为null。如下:
static final class ForwardingNode extends Node {
final Node[] nextTable;
ForwardingNode(Node[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
}
Node find(int h, Object k) {
// loop to avoid arbitrarily deep recursion on forwarding nodes
outer: for (Node[] tab = nextTable;;) {
Node e; int n;
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
for (;;) {
int eh; K ek;
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
if (eh < 0) {
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode)e).nextTable;
continue outer;
}
else
return e.find(h, k);
}
if ((e = e.next) == null)
return null;
}
}
}
}
构造函数
ConcurrentHashMap提供了一系列的构造函数用于创建ConcurrentHashMap对象:
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
public ConcurrentHashMap(Map extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
}
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
初始化: initTable()
ConcurrentHashMap的初始化主要由initTable()方法实现,在上面的构造函数中我们可以看到,其实ConcurrentHashMap在构造函数中并没有做什么事,仅仅只是设置了一些参数而已。其真正的初始化是发生在插入的时候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作时。其方法定义如下:
private final Node[] initTable() {
Node[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//sizeCtl < 0 表示有其他线程在初始化,该线程必须挂起
if ((sc = sizeCtl) < 0)
Thread.yield();
// 如果该线程获取了初始化的权利,则用CAS将sizeCtl设置为-1,表示本线程正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 进行初始化
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n];
table = tab = nt;
// 下次扩容的大小
sc = n - (n >>> 2); ///相当于0.75*n 设置一个扩容的阈值
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。
put操作
ConcurrentHashMap最常用的put、get操作,ConcurrentHashMap的put操作与HashMap并没有多大区别,其核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。我们先看源代码,然后根据源代码一步一步分析:
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key、value均不能为null
if (key == null || value == null) throw new NullPointerException();
//计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
// table为null,进行初始化工作
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//如果i位置没有节点,则直接插入,不需要加锁
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 有线程正在进行扩容操作,则先帮助扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//对该节点进行加锁处理(hash值相同的链表的头节点),对性能有点儿影响
synchronized (f) {
if (tabAt(tab, i) == f) {
//fh > 0 表示为链表,将该节点插入到链表尾部
if (fh >= 0) {
binCount = 1;
for (Node e = f;; ++binCount) {
K ek;
//hash 和 key 都一样,替换value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
//putIfAbsent()
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
//链表尾部 直接插入
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
//树节点,按照树的插入操作进行插入
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果链表长度已经达到临界值8 就需要把链表转换为树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//size + 1
addCount(1L, binCount);
return null;
}
按照上面的源码,我们可以确定put整个流程如下:
- 判空;ConcurrentHashMap的key、value都不允许为null
- 计算hash。利用方法计算hash值。
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
遍历table,进行节点插入操作,过程如下:
如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n - 1) & hash
如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换为红黑树结构
调用addCount方法,ConcurrentHashMap的size + 1
这里整个put操作已经完成。
get操作
ConcurrentHashMap的get操作还是挺简单的,无非就是通过hash来找key相同的节点而已,当然需要区分链表和树形两种情况。
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 链表,遍历
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get操作的整个逻辑非常清楚:
- 计算hash值
- 判断table是否为空,如果为空,直接返回null
- 根据hash值获取table中的Node节点(tabAt(tab, (n - 1) & h)),然后根据链表或者树形方式找到相对应的节点,返回其value值。
size 操作
ConcurrentHashMap的size()方法我们虽然用得不是很多,但是我们还是很有必要去了解的。ConcurrentHashMap的size()方法返回的是一个不精确的值,因为在进行统计的时候有其他线程正在进行插入和删除操作。当然为了这个不精确的值,ConcurrentHashMap也是操碎了心。
为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
//ConcurrentHashMap中元素个数,但返回的不一定是当前Map的真实元素个数。基于CAS无锁更新
private transient volatile long baseCount;
private transient volatile CounterCell[] counterCells;
这里我们需要清楚CounterCell 的定义
size()方法定义如下:
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
内部调用sunmCount():
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
//遍历,所有counter求和
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
sumCount()就是迭代counterCells来统计sum的过程。我们知道put操作时,肯定会影响size(),我们就来看看CouncurrentHashMap是如何为了这个不和谐的size()操碎了心。
在put()方法最后会调用addCount()方法,该方法主要做两件事,一件更新baseCount的值,第二件检测是否进行扩容,我们只看更新baseCount部分:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// s = b + x,完成baseCount++操作;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// 多线程CAS发生失败时执行
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
// 检查是否进行扩容
}
x == 1,如果counterCells == null,则U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x),如果并发竞争比较大可能会导致改过程失败,如果失败则最终会调用fullAddCount()方法。其实为了提高高并发的时候baseCount可见性的失败问题,又避免一直重试,JDK 8 引入了类Striped64,其中LongAdder和DoubleAdder都是基于该类实现的,而CounterCell也是基于Striped64实现的。如果counterCells != null,且uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)也失败了,同样会调用fullAddCount()方法,最后调用sumCount()计算s。
其实在1.8中,它不推荐size()方法,而是推崇mappingCount()方法,该方法的定义和size()方法基本一致:
public long mappingCount() {
long n = sumCount();
return (n < 0L) ? 0L : n; // ignore transient negative values
}
扩容操作
当ConcurrentHashMap中table元素个数达到了容量阈值(sizeCtl)时,则需要进行扩容操作。在put操作时最后一个会调用addCount(long x, int check),该方法主要做两个工作:1.更新baseCount;2.检测是否需要扩容操作。如下:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// 更新baseCount
//check >= 0 :则需要进行扩容操作
if (check >= 0) {
Node[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
//当前线程是唯一的或是第一个发起扩容的线程 此时nextTable=null
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
transfer()方法为ConcurrentHashMap扩容操作的核心方法。由于ConcurrentHashMap支持多线程扩容,而且也没有进行加锁,所以实现会变得有点儿复杂。整个扩容操作分为两步:
- 构建一个nextTable,其大小为原来大小的两倍,这个步骤是在单线程环境下完成的
- 将原来table里面的内容复制到nextTable中,这个步骤是允许多线程操作的,所以性能得到提升,减少了扩容的时间消耗
我们先来看看源代码,然后再一步一步分析:
private final void transfer(Node[] tab, Node[] nextTab) {
int n = tab.length, stride;
// 每核处理的量小于16,则强制赋值16
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n << 1]; //构建一个nextTable对象,其容量为原来容量的两倍
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)
ForwardingNode fwd = new ForwardingNode(nextTab);
// 当advance == true时,表明该节点已经处理过了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node f; int fh;
// 控制 --i ,遍历原hash表中的节点
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 用CAS计算得到的transferIndex
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 已经完成所有节点复制了
if (finishing) {
nextTable = null;
table = nextTab; // table 指向nextTable
sizeCtl = (n << 1) - (n >>> 1); // sizeCtl阈值为原来的1.5倍
return; // 跳出死循环,
}
// CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 遍历的节点为null,则放入到ForwardingNode 指针节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了
// 这里是控制并发扩容的核心
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 节点加锁
synchronized (f) {
// 节点复制工作
if (tabAt(tab, i) == f) {
Node ln, hn;
// fh >= 0 ,表示为链表节点
if (fh >= 0) {
// 构造两个链表 一个是原链表 另一个是原链表的反序排列
int runBit = fh & n;
Node lastRun = f;
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
// 在nextTable i 位置处插上链表
setTabAt(nextTab, i, ln);
// 在nextTable i + n 位置处插上链表
setTabAt(nextTab, i + n, hn);
// 在table i 位置处插上ForwardingNode 表示该节点已经处理过了
setTabAt(tab, i, fwd);
// advance = true 可以执行--i动作,遍历节点
advance = true;
}
// 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致
else if (f instanceof TreeBin) {
TreeBin t = (TreeBin)f;
TreeNode lo = null, loTail = null;
TreeNode hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode p = new TreeNode
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 扩容后树节点个数若<=6,将树转链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
上面的源码有点儿长,稍微复杂了一些,在这里我们抛弃它多线程环境,我们从单线程角度来看:
- 为每个内核分任务,并保证其不小于16
- 检查nextTable是否为null,如果是,则初始化nextTable,使其容量为table的两倍
- 死循环遍历节点,知道finished:节点从table复制到nextTable中,支持并发,请思路如下:
- 如果节点 f 为null,则插入ForwardingNode(采用Unsafe.compareAndSwapObjectf方法实现
),这个是触发并发扩容的关键 - 如果f为链表的头节点(fh >= 0),则先构造一个反序链表,然后把他们分别放在nextTable的i和i + n位置,并将
ForwardingNode 插入原节点位置,代表已经处理过了 - 如果f为TreeBin节点,同样也是构造一个反序
,同时需要判断是否需要进行unTreeify()操作,并把处理的结果分别插入到nextTable的i 和i+nw位置,并插入ForwardingNode 节点
- 所有节点复制完成后,则将table指向nextTable,同时更新sizeCtl = nextTable的0.75倍,完成扩容过程
在多线程环境下,ConcurrentHashMap用两点来保证正确性:ForwardingNode和synchronized。当一个线程遍历到的节点如果是ForwardingNode,则继续往后遍历,如果不是,则将该节点加锁,防止其他线程进入,完成后设置ForwardingNode节点,以便要其他线程可以看到该节点已经处理过了,如此交叉进行,高效而又安全。
下图是扩容的过程(来自:http://blog.csdn.net/u010723709/article/details/48007881
):
在put操作时如果发现fh.hash = -1,则表示正在进行扩容操作,则当前线程会协助进行扩容操作。
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
helpTransfer()方法为协助扩容方法,当调用该方法的时候,nextTable一定已经创建了,所以该方法主要则是进行复制工作。如下:
final Node[] helpTransfer(Node[] tab, Node f) {
Node[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
转换红黑树
在put操作是,如果发现链表结构中的元素超过了TREEIFY_THRESHOLD(默认为8),则会把链表转换为红黑树,已便于提高查询效率。如下:
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
调用treeifyBin方法用与将链表转换为红黑树。
private final void treeifyBin(Node[] tab, int index) {
Node b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)//如果table.length<64 就扩大一倍 返回
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode hd = null, tl = null;
//构造了一个TreeBin对象 把所有Node节点包装成TreeNode放进去
for (Node e = b; e != null; e = e.next) {
TreeNode p =
new TreeNode(e.hash, e.key, e.val,
null, null);//这里只是利用了TreeNode封装 而没有利用TreeNode的next域和parent域
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//在原来index的位置 用TreeBin替换掉原来的Node对象
setTabAt(tab, index, new TreeBin(hd));
}
}
}
}
}
从上面源码可以看出,构建红黑树的过程是同步的,进入同步后过程如下:
- 根据table中index位置Node链表,重新生成一个hd为头结点的TreeNode
- 根据hd头结点,生成TreeBin树结构,并用TreeBin替换掉原来的Node对象。
整个红黑树的构建过程有点儿复杂,关于ConcurrentHashMap 红黑树的构建过程,我们后续分析。
【注】:ConcurrentHashMap的扩容和链表转红黑树稍微复杂点,后续另起博文分析
欢迎扫一扫我的公众号关注 — 及时得到博客订阅哦!