在Paint 常用方法解析第一篇中分析了Paint的setColorFilter方法,下面接着分析Paint的其它set方法。
3 setMaskFilter
用来给Paint设置遮罩过滤器,该方法接受一个MaskFilter类型的参数,MaskFilter源码如下:
/**
* MaskFilter is the base class for object that perform transformations on
* an alpha-channel mask before drawing it. A subclass of MaskFilter may be
* installed into a Paint. Blur and emboss are implemented as subclasses of MaskFilter.
*/
public class MaskFilter {
protected void finalize() throws Throwable {
nativeDestructor(native_instance);
native_instance = 0; // Other finalizers can still call us.
}
private static native void nativeDestructor(long native_filter);
long native_instance;
}
从注释中可以得到如下两个信息:
1> MaskFilter是用来在绘制之前变化透明度通道值的基类。
2> MaskFilter不应该被直接使用,即应该使用MaskFilter的子类
Google一共为我们提供了2个MaskFilter子类:
3.1 BlurMaskFilter(模糊遮罩过滤器)
先来看看源码:
/**
* This takes a mask, and blurs its edge by the specified radius. Whether or
* or not to include the original mask, and whether the blur goes outside,
* inside, or straddles, the original mask's border, is controlled by the
* Blur enum.
*/
public class BlurMaskFilter extends MaskFilter {
public enum Blur {
/**
* Blur inside and outside the original border.
*/
NORMAL(0),
/**
* Draw solid inside the border, blur outside.
*/
SOLID(1),
/**
* Draw nothing inside the border, blur outside.
*/
OUTER(2),
/**
* Blur inside the border, draw nothing outside.
*/
INNER(3);
Blur(int value) {
native_int = value;
}
final int native_int;
}
/**
* Create a blur maskfilter.
*
* @param radius The radius to extend the blur from the original mask. Must be > 0.
* @param style The Blur to use
* @return The new blur maskfilter
*/
public BlurMaskFilter(float radius, Blur style) {
native_instance = nativeConstructor(radius, style.native_int);
}
private static native long nativeConstructor(float radius, int style);
}
上面代码的注释已经很清晰了,BlurMaskFilter通过指定的模糊半径来模糊边界,并且通过BlurMaskFilter.Blur来控制模糊的范围。
BlurMaskFilter的构造函数的参数:
1> radius 表示是Blur Radius,即阴影的模糊半径
2> style 用来控制模糊的范围
NORMAL :同时模糊边框的内部和外部
SOLID:加粗边框内部,模糊边框外部
OUTER:边框内部不绘制(即透明),模糊边框外部
INNER:模糊边框内部,边框外部不做处理
下面就举个例子:
public class MaskFilterView extends View {
private Paint paint = null;
private Bitmap bitmap = null;
public MaskFilterView(Context context) {
super(context);
setLayerType(LAYER_TYPE_SOFTWARE, null);
}
public MaskFilterView(Context context, @Nullable AttributeSet attrs) {
this(context, attrs, 0);
}
public MaskFilterView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
setLayerType(LAYER_TYPE_SOFTWARE, null);
paint = new Paint(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
BlurMaskFilter blurMaskFilter = new BlurMaskFilter(30, BlurMaskFilter.Blur.NORMAL);
paint.setMaskFilter(blurMaskFilter);
paint.setColor(Color.BLUE);
paint.setTextSize(210f);
bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.bitmap_shader);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
canvas.drawText("ANDROID", 100, 300, paint);
canvas.drawRect(200, 500, 500, 800, paint);
canvas.translate(200, 1000);
canvas.drawBitmap(bitmap, 0, 0, paint);
}
运行截图如下:
上面是NORMAL类型得到的结果,SOLID、OUTER、INNER的运行截图依次如下:
应用 图片的阴影效果
上面说过 MaskFilter是用来在绘制之前变化透明度通道值的基类,因此我们可以先获取到图片的alpha通道值并且对图片的alpha通道值进行模糊处理,然后依次绘制图片的alpha通道值和图片,代码如下:
public class MaskFilterView2 extends View {
private Paint paint = null;
private Bitmap alphaBitmap = null;
private Bitmap bitmap = null;
public MaskFilterView2(Context context) {
super(context);
setLayerType(LAYER_TYPE_SOFTWARE, null);
}
public MaskFilterView2(Context context, @Nullable AttributeSet attrs) {
this(context, attrs, 0);
}
public MaskFilterView2(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
setLayerType(LAYER_TYPE_SOFTWARE, null);
paint = new Paint(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
BlurMaskFilter blurMaskFilter = new BlurMaskFilter(20, BlurMaskFilter.Blur.OUTER);
paint.setMaskFilter(blurMaskFilter);
paint.setColor(Color.DKGRAY);
bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.bitmap_shader);
alphaBitmap = bitmap.extractAlpha();
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
canvas.translate(200, 200);
canvas.drawBitmap(alphaBitmap, 0, 0, paint);
canvas.drawBitmap(bitmap, 0, 0, null);
}
运行截图如下:
3.2 EmbossMaskFilter(浮雕遮罩过滤器)
先来看看源码:
public class EmbossMaskFilter extends MaskFilter {
/**
* Create an emboss maskfilter
*
* @param direction array of 3 scalars [x, y, z] specifying the direction of the light source
* @param ambient 0...1 amount of ambient light
* @param specular coefficient for specular highlights (e.g. 8)
* @param blurRadius amount to blur before applying lighting (e.g. 3)
* @return the emboss maskfilter
*/
public EmbossMaskFilter(float[] direction, float ambient, float specular, float blurRadius) {
if (direction.length < 3) {
throw new ArrayIndexOutOfBoundsException();
}
native_instance = nativeConstructor(direction, ambient, specular, blurRadius);
}
private static native long nativeConstructor(float[] direction, float ambient, float specular, float blurRadius);
}
由上面的代码可知,EmbossMaskFilter通过指定光源的方向、环境光强度、镜面高亮系数和模糊半径实现来实现浮雕效果。
EmbossMaskFilter是通过构造方法指定上面所说的4个属性,构造方法参数如下:
direction:光源的方向,取值为长度为3的数组[x,y,z]
ambient:环境光的强度,取值范围0...1
specular: 镜面高亮系数
blurRadius:模糊半径
下面举个例子:
public class EmbossFilterView extends View {
private Paint paint = null;
private Bitmap bitmap = null;
public EmbossFilterView(Context context) {
super(context);
setLayerType(LAYER_TYPE_SOFTWARE, null);
}
public EmbossFilterView(Context context, @Nullable AttributeSet attrs) {
this(context, attrs, 0);
}
public EmbossFilterView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
setLayerType(LAYER_TYPE_SOFTWARE, null);
paint = new Paint(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
float[] direction = new float[]{10, 10, 10};
float ambient = 0.5f;
float specular = 5;
float blurRadius = 5;
EmbossMaskFilter embossMaskFilter = new EmbossMaskFilter(direction, ambient, specular, blurRadius);
paint.setMaskFilter(embossMaskFilter);
paint.setColor(Color.BLUE);
paint.setTextSize(210f);
bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.bitmap_shader);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
canvas.drawText("ANDROID", 100, 300, paint);
canvas.drawRect(200, 500, 500, 800, paint);
canvas.translate(200, 1000);
canvas.drawBitmap(bitmap, 0, 0, paint);
}
}
运行截图如下:
4 setPathEffect
参考Drawable绘制过程源码分析和自定义Drawable实现动画中的2.1
5 setShader
参考Drawable绘制过程源码分析和自定义Drawable实现动画中的2.2
6 setXfermode
用来给Paint设置Xfermode模式,该方法接受一个Xfermode类型的参数,Xfermode的源码如下:
/**
* Xfermode is the base class for objects that are called to implement custom
* "transfer-modes" in the drawing pipeline. The static function Create(Modes)
* can be called to return an instance of any of the predefined subclasses as
* specified in the Modes enum. When an Xfermode is assigned to an Paint, then
* objects drawn with that paint have the xfermode applied.
*/
public class Xfermode {
protected void finalize() throws Throwable {
try {
finalizer(native_instance);
native_instance = 0;
} finally {
super.finalize();
}
}
private static native void finalizer(long native_instance);
long native_instance;
}
可以看到Xfermode并没有具体的实现,因此Xfermode一定有子类去实现一些方法供我们使用:
可以看到Xfermode一共有3个子类,对于AvoidXfermode和PixelXorXfermode这两个类,在API16时被作废,在API24的时候被移除(将targetSdkVersion和compileSdkVersion设置为24或者更高时,AvoidXfermode和PixelXorXfermode是找不到的),因此下面就不会再研究这两个类。
3.1 PorterDuffXfermode
public class PorterDuffXfermode extends Xfermode {
/**
* @hide
*/
public final PorterDuff.Mode mode;
/**
* Create an xfermode that uses the specified porter-duff mode.
*
* @param mode The porter-duff mode that is applied
*/
public PorterDuffXfermode(PorterDuff.Mode mode) {
this.mode = mode;
native_instance = nativeCreateXfermode(mode.nativeInt);
}
private static native long nativeCreateXfermode(int mode);
}
可以看到PorterDuffXfermode只是提供了一个接受PorterDuff.Mode类型参数的构造方法供我们使用,PorterDuff是由Thomas Porter和Tom Duff两个人的名字组成,其概念最早来自于他们在1984年题为“合成数字图像”的开创性文章中,因为Thomas Porter和Tom Duff的工作只关注 source和destination的alpha通道的影响,所以在原始论文中描述的12种运算在这里被称为alpha合成模式,PorterDuff类还提供了几种混合模式,它们类似地定义了合成source和destination但不限于alpha通道的结果, 这些混合模式不是由Thomas Porter和Tom Duff定义的,但为了方便起见,这些模式已被包括在PorterDuff类中。
下面展示的所有示例图都使用相同的Source image和Destination image:
下面会依次列举PorterDuff类枚举的18种合成模式的图像表示和计算公式,计算公式中的Sa表示Source image的alpha通道值,Sc表示Source image的颜色值,Da代表Destination image的alpha通道值,Dc代表Destination image的颜色值,Ra代表Result image的alpha通道值,Rc表示Result image的颜色值。
12种alpha合成模式
1> SRC
Destination像素被丢弃,使Source完好无损。
[站外图片上传中...(image-94b805-1569758227361)]
2> SRC_OVER
Source像素被绘制在目标像素之上。
[站外图片上传中...(image-cfbe08-1569758227362)] Da\& Rc=Sc+(1-Sa)Dc\end{align*})
3> SRC_IN
保留覆盖Destination像素的Source像素,丢弃剩余的Source和Destination像素。
[图片上传失败...(image-6058fa-1569758227362)]
4> SRC_ATOP
丢弃不和Destination像素重叠的Source像素。 在Destination像素上绘制剩余的Source像素。
[图片上传失败...(image-b6ac84-1569758227362)] Dc\end{align})
5> DST
Source像素被丢弃,使Destination完好无损。
[图片上传失败...(image-9663ba-1569758227362)]
6> DST_OVER
Source像素被绘制在Destination像素之后。
[图片上传失败...(image-ef946b-1569758227362)] Sa\& Rc=Dc+ (1-Da)Sc\end{align*})
7> DST_IN
保留覆盖Source像素的Destination像素,丢弃剩余的Source和Destination像素。
[图片上传失败...(image-a04f3d-1569758227362)]
8> DST_ATOP
丢弃未被Source像素覆盖的Destination像素。 在Source像素上绘制剩余的Destination像素。
[图片上传失败...(image-eca4b9-1569758227362)] Sc\end{align})
9> CLEAR
[站外图片上传中...(image-8ac303-1569758227362)]
10> SRC_OUT
保留Destination像素未覆盖的Source像素。 舍弃Destination像素覆盖的Source像素。 丢弃所有Destination像素。
[图片上传失败...(image-4ca76-1569758227362)] Sa\& Rc=(1-Da)Sc\end{align*})
11> DST_OUT
保持Source像素未覆盖的Destination像素。 舍弃Source像素覆盖的Destination像素。 丢弃所有Source像素。
[图片上传失败...(image-44fff1-1569758227362)] Da\& Rc=(1-Sa)Dc\end{align*})
12> XOR
丢弃重叠的Source和Destination像素。 绘制剩余的Source和Destination像素。
[图片上传失败...(image-fc65b3-1569758227362)] Sa+(1-Sa)Da\& Rc=(1-Da) Sc+(1-Sa)Dc\end{align*})
除了上面的12种alpha合成模式,PorterDuff类还提供了如下6种合成模式:
13> DARKEN
保留Source和Destination像素的最小组合。
[图片上传失败...(image-d69718-1569758227362)] Sc+(1-Sa)Dc + min(Sc, Dc)\end{align*})
14> LIGHTEN
保留Source和Destination像素的最大组合。
[图片上传失败...(image-eb5c75-1569758227362)] Sc+(1-Sa)Dc + max(Sc, Dc)\end{align*})
15> MULTIPLY
将Source和Destination像素相乘。
[图片上传失败...(image-34ec90-1569758227362)]
16> SCREEN
添加Source和Destination像素,然后减去与Destination相乘的Source像素。
[图片上传失败...(image-d9561-1569758227362)]
17> OVERLAY
Multiplies or screens the source and destination depending on the destination color.
[图片上传失败...(image-ac2f8b-1569758227362)] (Sa-Dc)&&{otherwise}\end{array}\right.\end{align})
18> ADD
将Source pixels添加到Destination pixels,并使结果饱和。
[图片上传失败...(image-d8fe58-1569758227362)]
3.2 PorterDuffXfermode应用举例
对于开发者来说,我们只需要知道这些模式提供什么样的效果,而对于这些模式对应的计算公式就不需要关心了,感兴趣的同学可以参考Alpha compositing,讲了这么多,PorterDuffXfermode到底有什么用呢:
1> 自定义实现不规则形状的View
具体实现参考 自定义实现不规则形状的View
2>实现橡皮擦的效果
对于这个效果应该用的比较广泛了,最常见的就是刮奖区的效果,首先给大家一个效果图:
运行效果还是很满意的,下面就是实现的源码:
布局代码
//自定义橡皮擦View的代码
public class EraserView extends View {
private int touchSlop = 8; // 滑动距离阀值:如果在屏幕上滑动距离小于此值则不会绘制
private int fgColor = 0xFFAAAAAA; // 前景颜色
private Bitmap fgBitmap = null; // 前景图片
private Drawable bgDrawable = null; // 背景图片
private float lastX; // 记录上一个触摸事件的位置坐标
private float lastY;
private Path path = null; // 橡皮擦的摩擦路径
private Paint paint = null; // 模拟橡皮擦的画笔
private Canvas pathCanvas = null; // 用于绘制橡皮擦路径的canva
public EraserView(Context context, int bgResId, int fgColorId) {
super(context);
if (bgResId < 0) {
throw new IllegalArgumentException("EraserView args error!");
}
Resources resources = context.getResources();
bgDrawable = resources.getDrawable(bgResId);
fgColor = resources.getColor(fgColorId);
if (null == bgDrawable) {
throw new IllegalArgumentException("EraserView args error!");
}
init();
}
public EraserView(Context context, @Nullable AttributeSet attrs) {
this(context, attrs, 0);
}
public EraserView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
TypedArray ta = context.obtainStyledAttributes(attrs, R.styleable.EraserView);
bgDrawable = ta.getDrawable(R.styleable.EraserView_eraser_view_bg);
fgColor = ta.getColor(R.styleable.EraserView_eraser_view_fg, 0xFFAAAAAA);
ta.recycle();
if (null == bgDrawable) {
throw new IllegalArgumentException("EraserView args error!");
}
bgDrawable.setCallback(this);
init();
}
private void init() {
ViewConfiguration viewConfiguration = ViewConfiguration.get(getContext());
touchSlop = viewConfiguration.getScaledTouchSlop();
path = new Path();
paint = new Paint(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
paint.setStyle(Paint.Style.STROKE);
paint.setColor(Color.TRANSPARENT);
paint.setStrokeWidth(50);
paint.setStrokeJoin(Paint.Join.ROUND);
paint.setStrokeCap(Paint.Cap.ROUND);
paint.setXfermode(new PorterDuffXfermode(PorterDuff.Mode.DST_IN));
paint.setColor(Color.TRANSPARENT);
}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
super.onSizeChanged(w, h, oldw, oldh);
if (null != bgDrawable) {
bgDrawable.setBounds(0, 0, getWidth(), getHeight());
}
createFgBitmap();
}
private void createFgBitmap() {
fgBitmap = Bitmap.createBitmap(getWidth(), getHeight(), Bitmap.Config.ARGB_8888);
pathCanvas = new Canvas(fgBitmap);
pathCanvas.drawColor(fgColor);
}
@Override
public boolean onTouchEvent(MotionEvent event) {
float x = event.getX();
float y = event.getY();
switch (event.getAction()) {
case MotionEvent.ACTION_DOWN: {
lastX = x;
lastY = y;
path.reset();
path.moveTo(x, y);
break;
}
case MotionEvent.ACTION_MOVE: {
float offsetX = x - lastX;
float offsetY = y - lastY;
if (offsetX >= touchSlop || offsetY >= touchSlop) {
path.quadTo(lastX, lastY, x, y);
lastX = x;
lastY = y;
}
break;
}
case MotionEvent.ACTION_UP: {
break;
}
}
invalidate();
return true;
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
bgDrawable.draw(canvas);
canvas.drawBitmap(fgBitmap, 0, 0, null);
pathCanvas.drawPath(path, paint);
}
}
上面的代码很简单,我就不在解释了,写不动了,我要睡了。