java HashMap原理

转载于:https://segmentfault.com/a/1190000012926722

1.概述

本篇文章我们来聊聊大家日常开发中常用的一个集合类 - HashMap。HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现。HashMap 允许 null 键和 null 值,在计算哈键的哈希值时,null 键哈希值为 0。HashMap 并不保证键值对的顺序,这意味着在进行某些操作后,键值对的顺序可能会发生变化。另外,需要注意的是,HashMap 是非线程安全类,在多线程环境下可能会存在问题。

在本篇文章中,我将会对 HashMap 中常用方法、重要属性及相关方法进行分析。需要说明的是,HashMap 源码中可分析的点很多,本文很难一一覆盖,请见谅。

2.原理

上一节说到 HashMap 底层是基于散列算法实现,散列算法分为散列再探测和拉链式。HashMap 则使用了拉链式的散列算法,并在 JDK 1.8 中引入了红黑树优化过长的链表。数据结构示意图如下:

java HashMap原理_第1张图片
image.png

对于拉链式的散列算法,其数据结构是由数组和链表(或树形结构)组成。在进行增删查等操作时,首先要定位到元素的所在桶的位置,之后再从链表中定位该元素。比如我们要查询上图结构中是否包含元素35,步骤如下:

  1. 定位元素35所处桶的位置,index = 35 % 16 = 3
  2. 3号桶所指向的链表中继续查找,发现35在链表中。

上面就是 HashMap 底层数据结构的原理,HashMap 基本操作就是对拉链式散列算法基本操作的一层包装。不同的地方在于 JDK 1.8 中引入了红黑树,底层数据结构由数组+链表变为了数组+链表+红黑树,不过本质并未变。好了,原理部分先讲到这,接下来说说源码实现。

3.源码分析

本篇文章所分析的源码版本为 JDK 1.8。与 JDK 1.7 相比,JDK 1.8 对 HashMap 进行了一些优化。比如引入红黑树解决过长链表效率低的问题。重写 resize 方法,移除了 alternative hashing 相关方法,避免重新计算键的 hash 等。不过本篇文章并不打算对这些优化进行分析,本文仅会分析 HashMap 常用的方法及一些重要属性和相关方法。(http://www.coolblog.xyz/2018/01/11/%E7%BA%A2%E9%BB%91%E6%A0%91%E8%AF%A6%E7%BB%86%E5%88%86%E6%9E%90/)。

3.1 构造方法

3.1.1 构造方法分析

HashMap 的构造方法不多,只有四个。HashMap 构造方法做的事情比较简单,一般都是初始化一些重要变量,比如 loadFactor 和 threshold。而底层的数据结构则是延迟到插入键值对时再进行初始化。HashMap 相关构造方法如下:

/** 构造方法 1 */
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/** 构造方法 2 */
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/** 构造方法 3 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

/** 构造方法 4 */
public HashMap(Map m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

上面4个构造方法中,大家平时用的最多的应该是第一个了。第一个构造方法很简单,仅将 loadFactor 变量设为默认值。构造方法2调用了构造方法3,而构造方法3仍然只是设置了一些变量。构造方法4则是将另一个 Map 中的映射拷贝一份到自己的存储结构中来,这个方法不是很常用。

上面就是对构造方法简单的介绍,构造方法本身并没什么太多东西,所以就不说了。接下来说说构造方法所初始化的几个的变量。

3.1.2 初始容量、负载因子、阈值

我们在一般情况下,都会使用无参构造方法创建 HashMap。但当我们对时间和空间复杂度有要求的时候,使用默认值有时可能达不到我们的要求,这个时候我们就需要手动调参。在 HashMap 构造方法中,可供我们调整的参数有两个,一个是初始容量 initialCapacity,另一个负载因子 loadFactor。通过这两个设定这两个参数,可以进一步影响阈值大小。但初始阈值 threshold 仅由 initialCapacity 经过移位操作计算得出。他们的作用分别如下:

名称 用途
initialCapacity HashMap 初始容量
loadFactor 负载因子
threshold 当前 HashMap 所能容纳键值对数量的最大值,超过这个值,则需扩容

相关代码如下:

/** The default initial capacity - MUST be a power of two. */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

/** The load factor used when none specified in constructor. */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

final float loadFactor;

/** The next size value at which to resize (capacity * load factor). */
int threshold;

如果大家去看源码,会发现 HashMap 中没有定义 initialCapacity 这个变量。这个也并不难理解,从参数名上可看出,这个变量表示一个初始容量,只是构造方法中用一次,没必要定义一个变量保存。但如果大家仔细看上面 HashMap 的构造方法,会发现存储键值对的数据结构并不是在构造方法里初始化的。这就有个疑问了,既然叫初始容量,但最终并没有用与初始化数据结构,那传这个参数还有什么用呢?这个问题我先不解释,给大家留个悬念,后面会说明。

默认情况下,HashMap 初始容量是16,负载因子为 0.75。这里并没有默认阈值,原因是阈值可由容量乘上负载因子计算而来(注释中有说明),即threshold = capacity * loadFactor。但当你仔细看构造方法3时,会发现阈值并不是由上面公式计算而来,而是通过一个方法算出来的。这是不是可以说明 threshold 变量的注释有误呢?还是仅这里进行了特殊处理,其他地方遵循计算公式呢?关于这个疑问,这里也先不说明,后面在分析扩容方法时,再来解释这个问题。接下来,我们来看看初始化 threshold 的方法长什么样的的,源码如下:

/**
 * Returns a power of two size for the given target capacity.
 */
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

上面的代码长的有点不太好看,反正我第一次看的时候不明白它想干啥。不过后来在纸上画画,知道了它的用途。总结起来就一句话:找到大于或等于 cap 的最小2的幂。至于为啥要这样,后面再解释。我们先来看看 tableSizeFor 方法的图解:

java HashMap原理_第2张图片
image.png

上面是 tableSizeFor 方法的计算过程图,这里cap = 536,870,913 = 229 + 1,多次计算后,算出n + 1 = 1,073,741,824 = 230。通过图解应该可以比较容易理解这个方法的用途,这里就不多说了。

说完了初始阈值的计算过程,再来说说负载因子(loadFactor)。对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况(假设键值对节点均匀分布在桶数组中)。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。一般情况下,我们用默认值就可以了。

3.2 查找

HashMap 的查找操作比较简单,查找步骤与原理篇介绍一致,即先定位键值对所在的桶的位置,然后再对链表或红黑树进行查找。通过这两步即可完成查找,该操作相关代码如下:

public V get(Object key) {
    Node e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node getNode(int hash, Object key) {
    Node[] tab; Node first, e; int n; K k;
    // 1\. 定位键值对所在桶的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            // 2\. 如果 first 是 TreeNode 类型,则调用黑红树查找方法
            if (first instanceof TreeNode)
                return ((TreeNode)first).getTreeNode(hash, key);

            // 2\. 对链表进行查找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

查找的核心逻辑是封装在 getNode 方法中的,getNode 方法源码我已经写了一些注释,应该不难看懂。我们先来看看查找过程的第一步 - 确定桶位置,其实现代码如下:

// index = (n - 1) & hash
first = tab[(n - 1) & hash]

这里通过(n - 1)& hash即可算出桶的在桶数组中的位置,可能有的朋友不太明白这里为什么这么做,这里简单解释一下。HashMap 中桶数组的大小 length 总是2的幂,此时,(n - 1) & hash 等价于对 length 取余。但取余的计算效率没有位运算高,所以(n - 1) & hash也是一个小的优化。举个例子说明一下吧,假设 hash = 185,n = 16。计算过程示意图如下:

image.png

上面的计算并不复杂,这里就不多说了。

在上面源码中,除了查找相关逻辑,还有一个计算 hash 的方法。这个方法源码如下:

/**
 * 计算键的 hash 值
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

看这个方法的逻辑好像是通过位运算重新计算 hash,那么这里为什么要这样做呢?为什么不直接用键的 hashCode 方法产生的 hash 呢?大家先可以思考一下,我把答案写在下面。

这样做有两个好处,我来简单解释一下。我们再看一下上面求余的计算图,图中的 hash 是由键的 hashCode 产生。计算余数时,由于 n 比较小,hash 只有低4位参与了计算,高位的计算可以认为是无效的。这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash >>> 4)。通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。此时的计算过程如下:

java HashMap原理_第3张图片
image.png

在 Java 中,hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位。

上面所说的是重新计算 hash 的一个好处,除此之外,重新计算 hash 的另一个好处是可以增加 hash 的复杂度。当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了。

3.3 遍历

和查找查找一样,遍历操作也是大家使用频率比较高的一个操作。对于 遍历 HashMap,我们一般都会用下面的方式:

for(Object key : map.keySet()) {
    // do something
}

for(HashMap.Entry entry : map.entrySet()) {
    // do something
}

从上面代码片段中可以看出,大家一般都是对 HashMap 的 key 集合或 Entry 集合进行遍历。上面代码片段中用 foreach 遍历 keySet 方法产生的集合,在编译时会转换成用迭代器遍历,等价于:

Set keys = map.keySet();
Iterator ite = keys.iterator();
while (ite.hasNext()) {
    Object key = ite.next();
    // do something
}

大家在遍历 HashMap 的过程中会发现,多次对 HashMap 进行遍历时,遍历结果顺序都是一致的。但这个顺序和插入的顺序一般都是不一致的。产生上述行为的原因是怎样的呢?大家想一下原因。我先把遍历相关的代码贴出来,如下:

public Set keySet() {
    Set ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}

/**
 * 键集合
 */
final class KeySet extends AbstractSet {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key), key, null, false, true) != null;
    }
    // 省略部分代码
}

/**
 * 键迭代器
 */
final class KeyIterator extends HashIterator 
    implements Iterator {
    public final K next() { return nextNode().key; }
}

abstract class HashIterator {
    Node next;        // next entry to return
    Node current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot

    HashIterator() {
        expectedModCount = modCount;
        Node[] t = table;
        current = next = null;
        index = 0;
        if (t != null && size > 0) { // advance to first entry 
            // 寻找第一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    final Node nextNode() {
        Node[] t;
        Node e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        if ((next = (current = e).next) == null && (t = table) != null) {
            // 寻找下一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }
    //省略部分代码
}

如上面的源码,遍历所有的键时,首先要获取键集合KeySet对象,然后再通过 KeySet 的迭代器KeyIterator进行遍历。KeyIterator 类继承自HashIterator类,核心逻辑也封装在 HashIterator 类中。HashIterator 的逻辑并不复杂,在初始化时,HashIterator 先从桶数组中找到包含链表节点引用的桶。然后对这个桶指向的链表进行遍历。遍历完成后,再继续寻找下一个包含链表节点引用的桶,找到继续遍历。找不到,则结束遍历。举个例子,假设我们遍历下图的结构:

java HashMap原理_第4张图片
image.png

HashIterator 在初始化时,会先遍历桶数组,找到包含链表节点引用的桶,对应图中就是3号桶。随后由 nextNode 方法遍历该桶所指向的链表。遍历完3号桶后,nextNode 方法继续寻找下一个不为空的桶,对应图中的7号桶。之后流程和上面类似,直至遍历完最后一个桶。以上就是 HashIterator 的核心逻辑的流程,对应下图:

java HashMap原理_第5张图片
image.png

遍历上图的最终结果是 19 -> 3 -> 35 -> 7 -> 11 -> 43 -> 59,为了验证正确性,简单写点测试代码跑一下看看。测试代码如下:

/**
 * 应在 JDK 1.8 下测试,其他环境下不保证结果和上面一致
 */
public class HashMapTest {

    @Test
    public void testTraversal() {
        HashMap map = new HashMap(16);
        map.put(7, "");
        map.put(11, "");
        map.put(43, "");
        map.put(59, "");
        map.put(19, "");
        map.put(3, "");
        map.put(35, "");

        System.out.println("遍历结果:");
        for (Integer key : map.keySet()) {
            System.out.print(key + " -> ");
        }
    }
}

遍历结果如下:


java HashMap原理_第6张图片
image.png

在本小节的最后,抛两个问题给大家。在 JDK 1.8 版本中,为了避免过长的链表对 HashMap 性能的影响,特地引入了红黑树优化性能。但在上面的源码中并没有发现红黑树遍历的相关逻辑,这是为什么呢?对于被转换成红黑树的链表该如何遍历呢?大家可以先想想,然后可以去源码或本文后续章节中找答案。

3.4 插入

3.4.1 插入逻辑分析

通过前两节的分析,大家对 HashMap 低层的数据结构应该了然于心了。即使我不说,大家也应该能知道 HashMap 的插入流程是什么样的了。首先肯定是先定位要插入的键值对属于哪个桶,定位到桶后,再判断桶是否为空。如果为空,则将键值对存入即可。如果不为空,则需将键值对接在链表最后一个位置,或者更新键值对。这就是 HashMap 的插入流程,是不是觉得很简单。当然,大家先别高兴。这只是一个简化版的插入流程,真正的插入流程要复杂不少。首先 HashMap 是变长集合,所以需要考虑扩容的问题。其次,在 JDK 1.8 中,HashMap 引入了红黑树优化过长链表,这里还要考虑多长的链表需要进行优化,优化过程又是怎样的问题。引入这里两个问题后,大家会发现原本简单的操作,现在略显复杂了。在本节中,我将先分析插入操作的源码,扩容、树化(链表转为红黑树,下同)以及其他和树结构相关的操作,随后将在独立的两小结中进行分析。接下来,先来看一下插入操作的源码:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node[] tab; Node p; int n, i;
    // 初始化桶数组 table,table 被延迟到插入新数据时再进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node e; K k;
        // 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;

        // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
        else if (p instanceof TreeNode)  
            e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 对链表进行遍历,并统计链表长度
            for (int binCount = 0; ; ++binCount) {
                // 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 如果链表长度大于或等于树化阈值,则进行树化操作
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }

                // 条件为 true,表示当前链表包含要插入的键值对,终止遍历
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }

        // 判断要插入的键值对是否存在 HashMap 中
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            // onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

插入操作的入口方法是 put(K,V),但核心逻辑在V putVal(int, K, V, boolean, boolean) 方法中。putVal 方法主要做了这么几件事情:

  1. 当桶数组 table 为空时,通过扩容的方式初始化 table
  2. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
  3. 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树
  4. 判断键值对数量是否大于阈值,大于的话则进行扩容操作

以上就是 HashMap 插入的逻辑,并不是很复杂,这里就不多说了。接下来来分析一下扩容机制。

3.4.2 扩容机制

在 Java 中,数组的长度是固定的,这意味着数组只能存储固定量的数据。但在开发的过程中,很多时候我们无法知道该建多大的数组合适。建小了不够用,建大了用不完,造成浪费。如果我们能实现一种变长的数组,并按需分配空间就好了。好在,我们不用自己实现变长数组,Java 集合框架已经实现了变长的数据结构。比如 ArrayList 和 HashMap。对于这类基于数组的变长数据结构,扩容是一个非常重要的操作。下面就来聊聊 HashMap 的扩容机制。

在详细分析之前,先来说一下扩容相关的背景知识:

在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。

HashMap 的扩容机制与其他变长集合的套路不太一样,HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。以上就是 HashMap 的扩容大致过程,接下来我们来看看具体的实现:

final Node[] resize() {
    Node[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果 table 不为空,表明已经初始化过了
    if (oldCap > 0) {
        // 当 table 容量超过容量最大值,则不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        } 
        // 按旧容量和阈值的2倍计算新容量和阈值的大小
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    } else if (oldThr > 0) // initial capacity was placed in threshold
        /*
         * 初始化时,将 threshold 的值赋值给 newCap,
         * HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
         */ 
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        /*
         * 调用无参构造方法时,桶数组容量为默认容量,
         * 阈值为默认容量与默认负载因子乘积
         */
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }

    // newThr 为 0 时,按阈值计算公式进行计算
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 创建新的桶数组,桶数组的初始化也是在这里完成的
    Node[] newTab = (Node[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
        for (int j = 0; j < oldCap; ++j) {
            Node e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 重新映射时,需要对红黑树进行拆分
                    ((TreeNode)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node loHead = null, loTail = null;
                    Node hiHead = null, hiTail = null;
                    Node next;
                    // 遍历链表,并将链表节点按原顺序进行分组
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将分组后的链表映射到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

上面的源码有点长,希望大家耐心看懂它的逻辑。上面的源码总共做了3件事,分别是:

  1. 计算新桶数组的容量 newCap 和新阈值 newThr
  2. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
  3. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。

上面列的三点中,创建新的桶数组就一行代码,不用说了。接下来,来说说第一点和第三点,先说说 newCap 和 newThr 计算过程。该计算过程对应 resize 源码的第一和第二个条件分支,如下:

// 第一个条件分支
if ( oldCap > 0) {
    // 嵌套条件分支
    if (oldCap >= MAXIMUM_CAPACITY) {...}
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY) {...}
} 
else if (oldThr > 0) {...}
else {...}

// 第二个条件分支
if (newThr == 0) {...}

通过这两个条件分支对不同情况进行判断,进而算出不同的容量值和阈值。它们所覆盖的情况如下:

分支一:

条件 覆盖情况 备注
oldCap > 0 桶数组 table 已经被初始化
oldThr > 0 threshold > 0,且桶数组未被初始化 调用 HashMap(int) 和 HashMap(int, float) 构造方法时会产生这种情况,此种情况下 newCap = oldThr,newThr 在第二个条件分支中算出
oldCap == 0 && oldThr == 0 桶数组未被初始化,且 threshold 为 0 调用 HashMap() 构造方法会产生这种情况。

这里把oldThr > 0情况单独拿出来说一下。在这种情况下,会将 oldThr 赋值给 newCap,等价于newCap = threshold = tableSizeFor(initialCapacity)。我们在初始化时传入的 initialCapacity 参数经过 threshold 中转最终赋值给了 newCap。这也就解答了前面提的一个疑问:initialCapacity 参数没有被保存下来,那么它怎么参与桶数组的初始化过程的呢?

嵌套分支:

条件 覆盖情况 备注
oldCap >= 230 桶数组容量大于或等于最大桶容量 230 这种情况下不再扩容
newCap < 230 && oldCap > 16 新桶数组容量小于最大值,且旧桶数组容量大于 16 该种情况下新阈值 newThr = oldThr << 1,移位可能会导致溢出

这里简单说明一下移位导致的溢出情况,当 loadFactor小数位为 0,整数位可被2整除且大于等于8时,在某次计算中就可能会导致 newThr 溢出归零。见下图:

java HashMap原理_第7张图片
image.png

分支二:

条件 覆盖情况 备注
newThr == 0 第一个条件分支未计算 newThr 或嵌套分支在计算过程中导致 newThr 溢出归零

说完 newCap 和 newThr 的计算过程,接下来再来分析一下键值对节点重新映射的过程。

在 JDK 1.8 中,重新映射节点需要考虑节点类型。对于树形节点,需先拆分红黑树再映射。对于链表类型节点,则需先对链表进行分组,然后再映射。需要的注意的是,分组后,组内节点相对位置保持不变。关于红黑树拆分的逻辑将会放在下一小节说明,先来看看链表是怎样进行分组映射的。

我们都知道往底层数据结构中插入节点时,一般都是先通过模运算计算桶位置,接着把节点放入桶中即可。事实上,我们可以把重新映射看做插入操作。在 JDK 1.7 中,也确实是这样做的。但在 JDK 1.8 中,则对这个过程进行了一定的优化,逻辑上要稍微复杂一些。在详细分析前,我们先来回顾一下 hash 求余的过程:

image.png

上图中,桶数组大小 n = 16,hash1 与 hash2 不相等。但因为只有后4位参与求余,所以结果相等。当桶数组扩容后,n 由16变成了32,对上面的 hash 值重新进行映射:

image.png

扩容后,参与模运算的位数由4位变为了5位。由于两个 hash 第5位的值是不一样,所以两个 hash 算出的结果也不一样。上面的计算过程并不难理解,继续往下分析。

java HashMap原理_第8张图片
image.png

假设我们上图的桶数组进行扩容,扩容后容量 n = 16,重新映射过程如下:

依次遍历链表,并计算节点 hash & oldCap 的值。如下图所示

java HashMap原理_第9张图片
image.png

如果值为0,将 loHead 和 loTail 指向这个节点。如果后面还有节点 hash & oldCap 为0的话,则将节点链入 loHead 指向的链表中,并将 loTail 指向该节点。如果值为非0的话,则让 hiHead 和 hiTail 指向该节点。完成遍历后,可能会得到两条链表,此时就完成了链表分组:

java HashMap原理_第10张图片
image.png

最后再将这两条链接存放到相应的桶中,完成扩容。如下图:

java HashMap原理_第11张图片
image.png

从上图可以发现,重新映射后,两条链表中的节点顺序并未发生变化,还是保持了扩容前的顺序。以上就是 JDK 1.8 中 HashMap 扩容的代码讲解。另外再补充一下,JDK 1.8 版本下 HashMap 扩容效率要高于之前版本。如果大家看过 JDK 1.7 的源码会发现,JDK 1.7 为了防止因 hash 碰撞引发的拒绝服务攻击,在计算 hash 过程中引入随机种子。以增强 hash 的随机性,使得键值对均匀分布在桶数组中。在扩容过程中,相关方法会根据容量判断是否需要生成新的随机种子,并重新计算所有节点的 hash。而在 JDK 1.8 中,则通过引入红黑树替代了该种方式。从而避免了多次计算 hash 的操作,提高了扩容效率。

本小节的内容讲就先讲到这,接下来,来讲讲链表与红黑树相互转换的过程。

3.4.3 链表树化、红黑树链化与拆分

JDK 1.8 对 HashMap 实现进行了改进。最大的改进莫过于在引入了红黑树处理频繁的碰撞,代码复杂度也随之上升。比如,以前只需实现一套针对链表操作的方法即可。而引入红黑树后,需要另外实现红黑树相关的操作。红黑树是一种自平衡的二叉查找树,本身就比较复杂。本篇文章中并不打算对红黑树展开介绍,本文仅会介绍链表树化需要注意的地方。至于红黑树详细的介绍,如果大家有兴趣,可以参考我的另一篇文章 - 红黑树详细分析。

在展开说明之前,先把树化的相关代码贴出来,如下:

static final int TREEIFY_THRESHOLD = 8;

/**
 * 当桶数组容量小于该值时,优先进行扩容,而不是树化
 */
static final int MIN_TREEIFY_CAPACITY = 64;

static final class TreeNode extends LinkedHashMap.Entry {
    TreeNode parent;  // red-black tree links
    TreeNode left;
    TreeNode right;
    TreeNode prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node next) {
        super(hash, key, val, next);
    }
}

/**
 * 将普通节点链表转换成树形节点链表
 */
final void treeifyBin(Node[] tab, int hash) {
    int n, index; Node e;
    // 桶数组容量小于 MIN_TREEIFY_CAPACITY,优先进行扩容而不是树化
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        // hd 为头节点(head),tl 为尾节点(tail)
        TreeNode hd = null, tl = null;
        do {
            // 将普通节点替换成树形节点
            TreeNode p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);  // 将普通链表转成由树形节点链表
        if ((tab[index] = hd) != null)
            // 将树形链表转换成红黑树
            hd.treeify(tab);
    }
}

TreeNode replacementTreeNode(Node p, Node next) {
    return new TreeNode<>(p.hash, p.key, p.value, next);
}

在扩容过程中,树化要满足两个条件:

  1. 链表长度大于等于 TREEIFY_THRESHOLD
  2. 桶数组容量大于等于 MIN_TREEIFY_CAPACITY

第一个条件比较好理解,这里就不说了。这里来说说加入第二个条件的原因,个人觉得原因如下:

当桶数组容量比较小时,键值对节点 hash 的碰撞率可能会比较高,进而导致链表长度较长。这个时候应该优先扩容,而不是立马树化。毕竟高碰撞率是因为桶数组容量较小引起的,这个是主因。容量小时,优先扩容可以避免一些列的不必要的树化过程。同时,桶容量较小时,扩容会比较频繁,扩容时需要拆分红黑树并重新映射。所以在桶容量比较小的情况下,将长链表转成红黑树是一件吃力不讨好的事。

回到上面的源码中,我们继续看一下 treeifyBin 方法。该方法主要的作用是将普通链表转成为由 TreeNode 型节点组成的链表,并在最后调用 treeify 是将该链表转为红黑树。TreeNode 继承自 Node 类,所以 TreeNode 仍然包含 next 引用,原链表的节点顺序最终通过 next 引用被保存下来。我们假设树化前,链表结构如下:

[图片上传失败...(image-85741a-1564645923787)]

HashMap 在设计之初,并没有考虑到以后会引入红黑树进行优化。所以并没有像 TreeMap 那样,要求键类实现 comparable 接口或提供相应的比较器。但由于树化过程需要比较两个键对象的大小,在键类没有实现 comparable 接口的情况下,怎么比较键与键之间的大小了就成了一个棘手的问题。为了解决这个问题,HashMap 是做了三步处理,确保可以比较出两个键的大小,如下:

  1. 比较键与键之间 hash 的大小,如果 hash 相同,继续往下比较
  2. 检测键类是否实现了 Comparable 接口,如果实现调用 compareTo 方法进行比较
  3. 如果仍未比较出大小,就需要进行仲裁了,仲裁方法为 tieBreakOrder(大家自己看源码吧)

tie break 是网球术语,可以理解为加时赛的意思,起这个名字还是挺有意思的。

通过上面三次比较,最终就可以比较出孰大孰小。比较出大小后就可以构造红黑树了,最终构造出的红黑树如下:

java HashMap原理_第12张图片
image.png

橙色的箭头表示 TreeNode 的 next 引用。由于空间有限,prev 引用未画出。可以看出,链表转成红黑树后,原链表的顺序仍然会被引用仍被保留了(红黑树的根节点会被移动到链表的第一位),我们仍然可以按遍历链表的方式去遍历上面的红黑树。这样的结构为后面红黑树的切分以及红黑树转成链表做好了铺垫,我们继续往下分析。

红黑树拆分

扩容后,普通节点需要重新映射,红黑树节点也不例外。按照一般的思路,我们可以先把红黑树转成链表,之后再重新映射链表即可。这种处理方式是大家比较容易想到的,但这样做会损失一定的效率。不同于上面的处理方式,HashMap 实现的思路则是上好佳(上好佳请把广告费打给我)。如上节所说,在将普通链表转成红黑树时,HashMap 通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。这样就避免了将红黑树转成链表后再进行映射,无形中提高了效率。

以上就是红黑树拆分的逻辑,下面看一下具体实现吧:

// 红黑树转链表阈值
static final int UNTREEIFY_THRESHOLD = 6;

final void split(HashMap map, Node[] tab, int index, int bit) {
    TreeNode b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode loHead = null, loTail = null;
    TreeNode hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    /* 
     * 红黑树节点仍然保留了 next 引用,故仍可以按链表方式遍历红黑树。
     * 下面的循环是对红黑树节点进行分组,与上面类似
     */
    for (TreeNode e = b, next; e != null; e = next) {
        next = (TreeNode)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }

    if (loHead != null) {
        // 如果 loHead 不为空,且链表长度小于等于 6,则将红黑树转成链表
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            /* 
             * hiHead == null 时,表明扩容后,
             * 所有节点仍在原位置,树结构不变,无需重新树化
             */
            if (hiHead != null) 
                loHead.treeify(tab);
        }
    }
    // 与上面类似
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

从源码上可以看得出,重新映射红黑树的逻辑和重新映射链表的逻辑基本一致。不同的地方在于,重新映射后,会将红黑树拆分成两条由 TreeNode 组成的链表。如果链表长度小于 UNTREEIFY_THRESHOLD,则将链表转换成普通链表。否则根据条件重新将 TreeNode 链表树化。举个例子说明一下,假设扩容后,重新映射上图的红黑树,映射结果如下:

java HashMap原理_第13张图片
image.png
红黑树链化

前面说过,红黑树中仍然保留了原链表节点顺序。有了这个前提,再将红黑树转成链表就简单多了,仅需将 TreeNode 链表转成 Node 类型的链表即可。相关代码如下:

final Node untreeify(HashMap map) {
    Node hd = null, tl = null;
    // 遍历 TreeNode 链表,并用 Node 替换
    for (Node q = this; q != null; q = q.next) {
        // 替换节点类型
        Node p = map.replacementNode(q, null);
        if (tl == null)
            hd = p;
        else
            tl.next = p;
        tl = p;
    }
    return hd;
}

Node replacementNode(Node p, Node next) {
    return new Node<>(p.hash, p.key, p.value, next);
}

上面的代码并不复杂,不难理解,这里就不多说了。到此扩容相关内容就说完了,不知道大家理解没。

3.5 删除

如果大家坚持看完了前面的内容,到本节就可以轻松一下。当然,前提是不去看红黑树的删除操作。不过红黑树并非本文讲解重点,本节中也不会介绍红黑树相关内容,所以大家不用担心。

HashMap 的删除操作并不复杂,仅需三个步骤即可完成。第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。相关源码如下:

public V remove(Object key) {
    Node e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node[] tab; Node p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        // 1\. 定位桶位置
        (p = tab[index = (n - 1) & hash]) != null) {
        Node node = null, e; K k; V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {  
            // 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
            if (p instanceof TreeNode)
                node = ((TreeNode)p).getTreeNode(hash, key);
            else {
                // 2\. 遍历链表,找到待删除节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }

        // 3\. 删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

删除操作本身并不复杂,有了前面的基础,理解起来也就不难了,这里就不多说了。

3.6 其他细节

前面的内容分析了 HashMap 的常用操作及相关的源码,本节内容再补充一点其他方面的东西。

被 transient 所修饰 table 变量

如果大家细心阅读 HashMap 的源码,会发现桶数组 table 被申明为 transient。transient 表示易变的意思,在 Java 中,被该关键字修饰的变量不会被默认的序列化机制序列化。我们再回到源码中,考虑一个问题:桶数组 table 是 HashMap 底层重要的数据结构,不序列化的话,别人还怎么还原呢?

这里简单说明一下吧,HashMap 并没有使用默认的序列化机制,而是通过实现readObject/writeObject两个方法自定义了序列化的内容。这样做是有原因的,试问一句,HashMap 中存储的内容是什么?不用说,大家也知道是键值对。所以只要我们把键值对序列化了,我们就可以根据键值对数据重建 HashMap。有的朋友可能会想,序列化 table 不是可以一步到位,后面直接还原不就行了吗?这样一想,倒也是合理。但序列化 talbe 存在着两个问题:

  1. table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
  2. 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误。

以上两个问题中,第一个问题比较好理解,第二个问题解释一下。HashMap 的get/put/remove等方法第一步就是根据 hash 找到键所在的桶位置,但如果键没有覆写 hashCode 方法,计算 hash 时最终调用 Object 中的 hashCode 方法。但 Object 中的 hashCode 方法是 native 型的,不同的 JVM 下,可能会有不同的实现,产生的 hash 可能也是不一样的。也就是说同一个键在不同平台下可能会产生不同的 hash,此时再对在同一个 table 继续操作,就会出现问题。

综上所述,大家应该能明白 HashMap 不序列化 table 的原因了。

你可能感兴趣的:(java HashMap原理)