- 【产品经理修炼之道】-产品经理的警钟:当DeepSeek向传统工业软件发起挑战
xiaoli8748_软件开发
产品经理
随着AI技术的飞速发展,工业领域正经历一场深刻的数字化变革。本文深入探讨了以DeepSeek为代表的低成本AI模型如何对传统工业信息系统发起冲击,甚至引发了“软件大灭绝”的危机。01一场由低成本AI引发的“工业软件大变革”当某家年产值10亿元的制造企业,用DeepSeek提供的AI模型替代了沿用十年的SAPBusinessObjects报表系统时,其IT总监在项目总结会上说:“我们每年花300万维
- 电竞数据怎么助力创业者在电竞行业发展
sanx18
人工智能
电竞数据对于创业者在电竞行业的发展有着非常大的助力作用,特别是在以下几个方面:1.精准市场定位与需求分析创业者可以通过电竞数据分析了解行业趋势、用户需求和市场痛点。例如,通过分析观众的观看行为、玩家的活跃度、不同游戏的受欢迎程度等数据,创业者可以更好地确定进入电竞行业的切入点,找到未被满足的市场需求。这样能够大大降低市场调研的成本,提高决策的准确性。2.个性化产品与服务开发电竞数据可以帮助创业者开
- 编程基础-算法研究-算法题
周陽讀書
算法基础个人经验可供分享算法
没想到工作几年后还要考算法题目遂研究记录目录0.简介1.丑数1.1题目1.2要点1.2.1丑数如何判别1.2.2后续丑数如何找到1.2.3结尾th,nd,st规律1.2.4完整可参考代码2大斐波那契数2.1题目2.2要点2.2.1范围超界2.3完整参考代码2.4延伸:C语言计算100的阶乘2.5其他细节点3迷宫问题3.1迷宫问题13.2迷宫问题20.简介一些技巧:~scanf#include{in
- 【LangChain编程:从入门到实践】实现多模态代理
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】实现多模态代理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:LangChain编程,多模态代理,自然语言处理,多媒体数据融合,复杂任务解决能力1.背景介绍1.1大背景与问题的提出随着人工智能技术的飞速发展,尤其是大模型在自然语言处理领域的突破,如通义千问、通义万相、阿里云通义大模型等,我们正迎来一个全
- 国际数字影像产业园官网:带您探寻文创产业园前沿资讯
树莓集团
科技创业创新
成都国际数字影像产业园位于成都市金牛区福堤路99号,是数字文创产业的一颗璀璨明珠。该产业园由金牛区政府和树莓科技集团共同打造,拥有诸多独特优势。从产业生态上看,重点发展数字影像、数字文创、数字媒体三大产业,入驻企业超200家。涵盖影视制作、动画设计、游戏开发等多个领域,形成了完整的产业链,从前端采集到后期制作,从内容创作到版权交易,各环节紧密相连。在配套设施与服务方面,商务配套齐全,会议中心、商超
- Empowering LLMs with Logical Reasoning: 从“语言大师”到“逻辑大师”的进化之路
步子哥
人工智能
“逻辑是智慧的骨架,而语言是智慧的血肉。让大语言模型(LLMs)既能说会道,又能逻辑严谨,是AI发展的下一座高峰。”开篇:语言模型的“逻辑盲区”近年来,大语言模型(LLMs)在自然语言处理(NLP)任务中取得了令人瞩目的成就。从生成流畅的文章到翻译复杂的句子,这些模型似乎无所不能。然而,当我们试图让它们回答逻辑推理问题时,却发现它们的表现常常令人失望。比如,某顶尖LLM在回答以下问题时出现了自相矛
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- 深度解析:大模型开源的真与假
rs勿忘初心
#AI大模型大模型开源闭源对比开源闭源区别
目录大模型企业开闭源策略各异开源大模型的定义与现状开源内容的局限性通常开放的内容实际未开放的关键内容法律与商业模式的约束开源许可证的重要性大模型的定制许可证及其限制性条款商业公司对开源大模型的策略和目的建立生态系统吸引开发者提升品牌形象保持竞争优势技术创新和改进技术与协助开发的挑战训练和推理过程的资源需求差异微调和衍生模型的技术实现及其局限性开源大模型在协作开发中的局限总结大模型的发展开启了AIG
- DeepSeek开源周第二弹:DeepEP如何用RDMA+FP8让MoE模型飞起来?
曦紫沐
大模型deepseek
一、引言:MoE模型的通信瓶颈与DeepEP的诞生在混合专家(MoE)模型训练中,专家间的全对全(All-to-All)通信成为性能瓶颈。传统方案在跨节点传输时带宽利用率不足50%,延迟高达300μs以上。DeepSeek推出的DeepEP作为首个开源EP通信库,通过软硬件协同优化,将节点内通信带宽压榨至158GB/s(接近NVLink极限),跨节点RDMA延迟降至46GB/s,成为大模型训练/推
- 《AI 大模型 ChatGPT 的传奇》
武昌库里写JAVA
面试题汇总与解析课程设计springbootvue.js算法数据结构
《AI大模型ChatGPT的传奇》——段方某世界100强企业大数据/AI总设计师教授北京大学博士后助理:1三6三二四61四五41AI大模型的概念和特点1.1什么是”大模型、多模态“?1.2大模型带来了什么?1.3大模型为什么能产生质变?1.4算法层面的跃升1.4.1RNN到transformor1.4.2扩散模型diffusion1.4.3跨模态的CLIP框架1.5AIGC的耀眼成果1.5.1AI
- 利用DSPy优化LangChain RAG系统的实战指南
scaFHIO
langchainpython
利用DSPy优化LangChainRAG系统的实战指南技术背景介绍DSPy是一个用于大语言模型(LLMs)的出色框架,它引入了一个自动编译器,能够教会模型如何执行你程序中的声明性步骤。具体来说,DSPy编译器会在内部追踪你的程序,然后为大型语言模型(LLMs)创建高质量的提示(或为小型LLMs训练自动微调),以教会它们任务的步骤。感谢OmarKhattab的努力,现在DSPy可以与LangChai
- 大模型RAG优化之高可用向量数据库的“热更”难题与解决方案
kakaZhui
大模型应用案例之RAG打造专属知识库botAIGCchatgpt人工智能llama数据库
在现代应用中,向量数据库被广泛用于图像搜索、推荐系统、语义搜索等场景。但与传统数据库不同,向量数据库的“热更”(即在不中断服务的情况下更新索引)是一个具有挑战性的问题。本文将深入探讨这一问题,对比主流向量数据库的热更方案,并给出Qdrant的代码示例。1.什么是向量数据库的“热更”?想象一下,你正在运营一个大型电商平台,用户可以上传图片搜索相似商品。你的商品库每天都在更新:新商品上架:需要将新商品
- GPT-4提示词冠军如何写 prompt:CO-STAR 框架、文本分段、系统提示
天涯倦客的美丽人生
prompt数据库
CO-STAR框架CO-STAR框架用来构建提示词(prompt),分隔符对提示词进行文本分段。©上下文:为任务提供背景信息通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。(O)目标:明确你要求大语言模型完成的任务清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。(S)风格:明确你期望的写作风格你可以指定一个特定的
- 前言:什么是大模型微调
伯牙碎琴
大模型微调深度学习人工智能机器学习大模型微调训练
一、大模型微调的基础知识1.什么是大模型微调?大模型微调(Fine-tuning)是指在预训练模型的基础上,针对特定的任务或数据集进行进一步训练的过程。预训练模型通常在大规模的通用数据上训练,具备广泛的语言理解和生成能力。通过微调,我们可以让模型更好地适应特定的领域或任务,例如情感分析、问答系统、文本生成等。2.为什么需要微调?适应特定任务:通用模型虽然功能强大,但在特定任务上可能表现不够精准。微
- redis中的bigkey及读取优化
w_t_y_y
#java操作redisredis数据库缓存
一、bigKey介绍1、简介在Redis中,BigKey(大键)指的是占用大量内存的单个键。通常,Redis是一个高性能的内存数据库,但是当某些键变得非常大时,会带来性能上的影响。例如,大量的内存消耗、长时间的操作延迟,甚至可能导致Redis停止响应或崩溃。通俗的来说,指的是value值大,而不是key值大。2、case大字符串(String):单个字符串值过大,例如存储非常大的JSON或XML数
- 大模型专栏博文汇总和索引
Donvink
大模型transformer深度学习人工智能语言模型
大模型专栏主要是汇总了我在学习大模型相关技术期间所做的一些总结和笔记,主要包括以下几个子专栏:DeepSeek-R1AIGC大模型实践Transformer多模态系统视频理解对比学习目标检测目标跟踪图神经网络大模型专栏汇总了以上所有子专栏的论文,目前暂时先按照不同的技术领域划分子专栏,子专栏之间的内容可能会有交集,不完全是独立的。为了方便查阅相关模块的内容,故以此文章进行汇总与索引。一、DeepS
- 现代前端框架渲染机制深度解析:虚拟DOM到编译时优化
桂月二二
前端框架
引言:前端框架的性能进化论TikTokWeb将React18迁移至Vue3后,点击响应延迟降低42%,内存占用减少35%。Shopify采用Svelte重构核心交互模块,首帧渲染速度提升580%。Discord在Next.js14中启用ReactServerComponents后,服务端数据吞吐量增加240%,客户端Bundle体积减少54%。一、主流框架技术架构差异1.1三大范式运行机制对比维度
- 技术大咖面对面 | 网易技术大佬的自我修养
网易数智
网易云信技术干货人工智能通信经验分享程序员创富实时音视频业界资讯
技术人的成长是一个长期的过程,从一个懵懂的青涩少年,到一个具有一定影响力的技术专家,伴随的是自己能力的提升、认知的升级、影响力的壮大。都说成长没有捷径,但有方法,那这条成长的路,我们要怎么走,才能少走弯路,更快前行呢?基本素养根据自己这么多年的亲身经历,以及周围同事的成长路径,我总结了下面六条技术人应当具备的基本素养,作为我们技术之路能够走得更远,走得更顺的基石。1长期学习技术人的底气来自于技术。
- DeepSeek 持续火爆;微信蓝包首秀;世界级人工智能科学家许主洪加盟阿里巴巴...|网易数智日报
网易数智
网易数智日报人工智能大数据业界资讯ai云计算
DeepSeek持续火爆,多个云平台上线相关模型「抢食」算力需求AI公司DeepSeek旗下大模型DeepSeek-R1「爆火」后,多个云平台宣布上线DeepSeek旗下模型。2月5日,阅文集团宣布,旗下作家辅助创作应用“作家助手”已集成幻方量化旗下AI公司深度求索(DeepSeek)的DeepSeek-R1大模型。这是DeepSeek首次应用于网文领域,旨在为作家提供更智能的创作支持。2月4日,
- 四、数据湖应用平台架构
moton2017
大数据治理大数据数据湖数据管理数据架构数据安全大数据管理数据仓库
数据湖应用平台是一个用于存储、处理和分析大容量、用途数据的平台。它旨在以隐蔽、高效率的方式,为企业提供全面的数据管理和应用能力。核心概念数据湖:一个集中各种原始格式数据的存储库,包括格式化数据、半格式化数据和非格式化数据。数据应用:基于数据湖构建的各种数据分析、挖掘和应用服务,例如:数据图表线路商业智能预测分析1.要素组成一个典型的数据湖应用平台架构通常包括以下几个核心组件:数据采集层:从各种数据
- 大模型替代程序猿?不可能,绝对不可能!进化路线来了来!!!
XiaoDuofCSDN
算法leetcode职场和发展java分布式深度学习神经网络
大模型后端开发面试指南:技术体系构建与实践路线一、背景说明随着大模型(LLM)技术进入工业化落地阶段,行业对大模型后端开发工程师的需求呈现爆发式增长。该岗位要求候选人不仅需要掌握传统分布式系统开发能力,还需深入理解大模型特有的计算范式。本文针对零基础转型场景,提供体系化的能力建设方案。二、核心目标建立大模型后端开发技术认知图谱构建可验证的工程项目实践体系形成持续跟踪技术演进的方法论三、持续关注的核
- Spring 学习笔记(一)Spring两大核心技术IOC控制反转/DI依赖注入和AOP面向切面 案例 | 优化传统的Web开发 | MVC架构DAO层与Service层之间的解耦
「已注销」
#SSMSpring
文章目录参考资料运行环境一、Spring概述1.1Spring产生背景1.2两大核心技术IOC/DI+AOP二、Spring核心技术2.1IOC/DI2.1.1案例:IOC实现解耦2.1.2IOC/DI使用总结2.2AOP2.2.1案例:AOP实现日志打印2.2.2AOP使用总结:三、总结参考资料SPOC运行环境windows10IDEA2021.1专业版JDK8Spring-5.0.5一、Spr
- 算力革新引领数字中国智能跃迁
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正通过架构创新与场景融合加速重构技术生态。当前算力体系呈现三大演进方向:异构计算突破传统芯片性能瓶颈,实现CPU、GPU、FPGA等多元架构的协同调度;边缘计算推动工业设备、物联网终端等场景的实时响应能力提升,形成“云-边-端”三级计算网络;量子计算则在加密通信、药物研发等领域展现颠覆性潜力,其物理比特操控精度已达实用化临界点。技术方向核心特征典型应用场景异构
- 代码随想录 Day 37 | 【第九章 动态规划part 01】理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯
Accept17
动态规划算法
一、理论基础理论基础无论大家之前对动态规划学到什么程度,一定要先看我讲的动态规划理论基础。如果没做过动态规划的题目,看我讲的理论基础,会有感觉是不是简单题想复杂了?其实并没有,我讲的理论基础内容,在动规章节所有题目都有运用,所以很重要!如果做过动态规划题目的录友,看我的理论基础就会感同身受了。代码随想录视频:从此再也不怕动态规划了,动态规划解题方法论大曝光!|理论基础|力扣刷题总结|动态规划入门_
- 记录海尔7G笔记本电脑 实现无桌面纯命令行安装debian12 系统并息屏
debian笔记本电脑
海尔7G笔记本电脑,十几年前的一台笔记本,想在家当服务器用。为了省电,我没有安装桌面,用的是纯命令行模式。通过网上查询各种文章大模型等等方式,最终找到了解决方案。使用vbetool(VESA电源管理)vbetool是一个用于控制VESABIOSExtension(VBE)的工具,主要用于Linux系统中管理显示器的电源状态。通过vbetool,用户可以关闭或开启显示器的电源,从而实现对显示器电
- vue3中子组件调用父组件事件
小华0000
vue.jsjavascript前端
在Vue3中,子组件调用父组件的事件(或方法)的方式与Vue2类似,但Vue3引入了CompositionAPI,这可能会改变你组织代码的方式。不过,基本的通信机制——通过自定义事件($emit)通知父组件——仍然保持不变。以下是如何在Vue3中使用OptionsAPI和CompositionAPI的示例:使用OptionsAPI父组件(ParentComponent.vue)父组件importC
- 当x趋于零时,零乘以无穷的极限等于多少
蓝桉802
考研
当x趋于零时,零乘以无穷的极限是未定义。在数学中,0乘以无穷大(0×∞)是一个未定义的表达式,因为它涉及到两个相互矛盾的概念:0乘以任何有限数都等于0,而无穷大乘以任何非零数都应该是无穷大。因此,我们不能确定0乘以无穷大应该是0还是无穷大,所以它被认为是未定义的。为了更好地理解这个问题,我们可以考虑一个极限的例子。假设我们有两个函数f(x)和g(x),其中f(x)趋于0,而g(x)趋于无穷大。
- 通过vLLM部署LLM模型到生产环境中
MichaelIp
人工智能实验室大语言模型人工智能pythonAIGC自然语言处理语言模型promptllama
文章目录1使用vLLM部署模型2部署过程2.1准备GPU环境2.2安装vLLM依赖项3使用vLLM部署模型并启动服务3.1部署开源模型3.2部署微调模型4测试服务是否正常运行5评估服务性能1使用vLLM部署模型本地部署模型主要包含下载模型、编写模型加载代码和发布为支持API访问的应用服务这三个步骤。这个过程通常伴随较高的人工部署成本,vLLM可以用来简化这一流程。它是一个专为大模型推理设计的开源框
- 国内三大云数据库测试对比
m0_63984008
数据库腾讯云阿里云
导读腾讯云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据库运维的门槛。同时云数据库还支持高可用架构,对数据的安全性和服务的可靠性更有保障。另外有的云数据库厂商还提供了诸如数据库审计、慢查询分析、数据回档等能力,大大减轻了数据库运维和DBA的工作量。我司CTO和技术总监都是腾讯系的,所以我们一开始就选用腾讯云的服务。他们家的云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据
- UnionLLM——通过统一接口调用国内外所有LLM的Python开源工具包
everfly
pythongithub
最近忙里偷闲和公司前端小伙伴一起撸了一个Python开源项目——UnionLLM。这是一个通过与OpenAI兼容的统一方式调用各种国内外各种大语言模型和Agent编排工具的轻量级开源工具包。我们开发它的起因是因为在实际项目中,经常需要调用多个大语言模型的API,但是国内每个大语言模型的接口和参数都不一样,这给我们的工作带来了很大的困扰和额外的成本。UnionLLM的目标是通过统一且容易扩展的方式连
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多