指数平滑方法简介

指数平滑(Exponential smoothing)是除了 ARIMA 之外的另一种被广泛使用的时间序列预测方法(关于 ARIMA,请参考 时间序列模型简介)。 指数平滑即指数移动平均(exponential moving average),是以指数式递减加权的移动平均。各数值的权重随时间指数式递减,越近期的数据权重越高。常用的指数平滑方法有一次指数平滑、二次指数平滑和三次指数平滑。

1. 一次指数平滑

一次指数平滑又叫简单指数平滑(simple exponential smoothing, SES),适合用来预测没有明显趋势和季节性的时间序列。其预测结果是一条水平的直线。模型形如:

Forecast equation:
Smoothing equantion:

其中 是真实值, 为预测值, 为平滑值, 。

定义残差 ,其中 ,则可以通过优化方法得到 和 。

使用 python 的 statsmodels 可以方便地应用该模型:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.holtwinters import SimpleExpSmoothing

x1 = np.linspace(0, 1, 100)
y1 = pd.Series(np.multiply(x1, (x1 - 0.5)) + np.random.randn(100))
ets1 = SimpleExpSmoothing(y1)
r1 = ets1.fit()
pred1 = r1.predict(start=len(y1), end=len(y1) + len(y1)//2)

pd.DataFrame({
    'origin': y1,
    'fitted': r1.fittedvalues,
    'pred': pred1
}).plot(legend=True)

效果如图:


指数平滑方法简介_第1张图片
ses.png

2. 二次指数平滑

2.1 Holt's linear trend method

Holt 扩展了简单指数平滑,使其可以用来预测带有趋势的时间序列。直观地看,就是对平滑值的一阶差分(可以理解为斜率)也作一次平滑。模型的预测结果是一条斜率不为0的直线。模型形如:

Forecast equation:
Level equation:
Trend equation:

其中 , 。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import Holt

x2 = np.linspace(0, 99, 100)
y2 = pd.Series(0.1 * x2 + 2 * np.random.randn(100))
ets2 = Holt(y2)
r2 = ets2.fit()
pred2 = r2.predict(start=len(y2), end=len(y2) + len(y2)//2)

pd.DataFrame({
    'origin': y2,
    'fitted': r2.fittedvalues,
    'pred': pred2
}).plot(legend=True)

效果如图:


指数平滑方法简介_第2张图片
holt.png

2.2 Damped trend methods

Holt's linear trend method 得到的预测结果是一条直线,即认为未来的趋势是固定的。对于短期有趋势、长期趋于稳定的序列,可以引入一个阻尼系数 ,将模型改写为

Forecast equation:
Level equation:
Trend equation:

3. 三次指数平滑

为了描述时间序列的季节性,Holt 和 Winters 进一步扩展了 Holt's linear trend method,得到了三次指数平滑模型,也就是通常说的 Holt-Winters’ 模型。我们用 表示“季节”的周期。根据季节部分和非季节部分的组合方式不同,Holt-Winters’ 又可以分为加法模型和乘法模型。

3.1 Holt-Winters’ additive method

加法模型形如:

Forecast equation:
Level equation:
Trend equation:
Seasonal equation:

其中 , ,。 是 的整数部分。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import ExponentialSmoothing

x3 = np.linspace(0, 4 * np.pi, 100)
y3 = pd.Series(20 + 0.1 * np.multiply(x3, x3) + 8 * np.cos(2 * x3) + 2 * np.random.randn(100))
ets3 = ExponentialSmoothing(y3, trend='add', seasonal='add', seasonal_periods=25)
r3 = ets3.fit()
pred3 = r3.predict(start=len(y3), end=len(y3) + len(y3)//2)

pd.DataFrame({
    'origin': y3,
    'fitted': r3.fittedvalues,
    'pred': pred3
}).plot(legend=True)

效果如图:


指数平滑方法简介_第3张图片
holt_winters_add.png

3.2 Holt-Winters’ multiplicative method

乘法模型形如:

Forecast equation:
Level equation:
Trend equation:
Seasonal equation:

效果如图:


指数平滑方法简介_第4张图片
holt_winters_mul.png

3.3 Holt-Winters’ damped method

Holt-Winters’ 模型的趋势部分同样可以引入阻尼系数 ,这里不再赘述。

4. 参数优化和模型选择

参数优化的方法是最小化误差平方和或最大化似然函数。模型选择可以根据信息量准则,常用的有 AIC 和 BIC等。

AIC 即 Akaike information criterion, 定义为

其中 是似然函数, 是参数数量。用 AIC 选择模型时要求似然函数大,同时对参数数量作了惩罚,在似然函数相近的情况下选择复杂度低的模型。

BIC 即 Bayesian information criterion,定义为

其中 是样本数量。当 时,,因此当样本量较大时 BIC 对模型复杂度的惩罚比 AIC 更严厉。

5. 与 ARIMA 的关系

线性的指数平滑方法可以看作是 ARIMA 的特例。例如简单指数平滑等价于 ARIMA(0, 1, 1),Holt's linear trend method 等价于 ARIMA(0, 2, 2),而 Damped trend methods 等价于 ARIMA(1, 1, 2) 等。

我们不妨来验证一下。

可以改写为

亦即

两边同时加上 ,得

而 ARIMA(p, d, q) 可以表示为

其中 是滞后算子(Lag operator),。
考虑 ARIMA(0, 1, 1)



亦即

令 ,则两者等价。

非线性的指数平滑方法则没有对应的 ARIMA 表示。

参考文献

[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2014.
[2] Exponential smoothing - Wikipedia https://en.wikipedia.org/wiki/Exponential_smoothing
[3] Introduction to ARIMA models - Duke https://people.duke.edu/~rnau/411arim.htm

你可能感兴趣的:(指数平滑方法简介)