一、Spark简介:


Spark是一种与Hadoop相似的开源集群计算环境

Spark基于MR算法实现的分布式计算,拥有Hadoop MR的优点,不同的是结果保存在内存中

Spark是一个针对超大数据集合的低延迟的集群分布式计算系统,比MapReduce快40倍左右

Spark是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架

Spark兼容Hadoop的API,能够读写Hadoop的HDFS HBASE 顺序文件等


传统的hadoop

Spark集群独立模式HA_第1张图片



Spark

Spark集群独立模式HA_第2张图片


环境概述:

192.168.1.2 master

192.168.1.3 worker

192.168.1.4 worker


二、Scala环境设置

[root@master ~]# tar zxvf scala-2.10.4.tgz -C /home/hadoop/
[root@master ~]# cd /home/hadoop/
[root@master hadoop]# ln -s scala-2.10.4 scala
[root@master ~]# chown -R hadoop.hadoop /home/hadoop/
# Scala
export SCALA_HOME=/home/hadoop/scala
export PATH=$PATH:$HADOOP_DEV_HOME/sbin:$HADOOP_DEV_HOME/bin:$SCALA_HOME/bin
[root@master hadoop]# source /home/hadoop/.bashrc 
[root@master hadoop]# su - hadoop
[hadoop@master ~]$ scala
Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_25).
Type in expressions to have them evaluated.
Type :help for more information.

scala> 

# slave1,slave2执行相同的操作

三、spark环境配置

[root@master ~]# tar zxvf spark-1.0.2-bin-hadoop2.tgz -C /home/hadoop/
[root@master hadoop]# ln -s spark-1.0.2-bin-hadoop2 spark
[root@master hadoop]# chown -R hadoop.hadoop /home/hadoop/
[root@master hadoop]# su - hadoop
# 修改.bashrc文件
# Spark
export SPARK_HOME=/home/hadoop/spark
export PATH=$PATH:$HADOOP_DEV_HOME/sbin:$HADOOP_DEV_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin
[hadoop@master ~]$ source .bashrc 

# 在slave1,slave2执行相同的操作

四、spark独立模式配置

[hadoop@master ~]$ cd spark/conf/
[hadoop@master conf]$ cp spark-env.sh.template spark-env.sh
# 修改spark-env.sh
JAVA_HOME=/usr/java/jdk
SPARK_MASTER_IP=master
SPARK_WORKER_MEMORY=512m

# 修改slaves文件
slave1
slave2

# 在slave1,slave2节点做相同的操作

# 在master节点上启动spark
[hadoop@master sbin]$ ./start-all.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-master.out
slave2: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-slave2.out
slave1: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-slave1.out

# 查看进程
[hadoop@master sbin]$ jps
44526 NameNode
44835 ResourceManager
47017 Master
45104 JobHistoryServer
46226 HMaster
44695 SecondaryNameNode
45169 QuorumPeerMain
47125 Jps

[hadoop@slave1 conf]$ jps
2302 NodeManager
2914 HRegionServer
2451 QuorumPeerMain
3431 Worker
3481 Jps
2213 DataNode    

[hadoop@slave2 ~]$ jps
11262 DataNode
12761 Worker
11502 QuorumPeerMain
11360 NodeManager
12811 Jps
12032 HRegionServer

master webUI:    http://192.168.1.2:8080/

Spark集群独立模式HA_第3张图片

worker web UI: http://192.168.1.3:8081/


Spark集群独立模式HA_第4张图片


五、spark实践

[hadoop@master conf]$ MASTER=spark://master:7077 spark-shell

Spark集群独立模式HA_第5张图片




scala> val rdd_a = sc.textFile("hdfs://master:9000/tmp/wordcount.txt")
15/03/24 13:20:31 INFO storage.MemoryStore: ensureFreeSpace(141503) called with curMem=0, maxMem=311387750
15/03/24 13:20:31 INFO storage.MemoryStore: Block broadcast_0 stored as values to memory (estimated size 138.2 KB, free 296.8 
MB)rdd_a: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at :12
scala> rdd_a.first()
15/03/24 13:25:31 INFO mapred.FileInputFormat: Total input paths to process : 1
15/03/24 13:25:31 INFO spark.SparkContext: Starting job: first at :15
15/03/24 13:25:31 INFO scheduler.DAGScheduler: Got job 0 (first at :15) with 1 output partitions (allowLocal=true)
15/03/24 13:25:31 INFO scheduler.DAGScheduler: Final stage: Stage 0(first at :15)
15/03/24 13:25:31 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/24 13:25:31 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 13:25:31 INFO scheduler.DAGScheduler: Computing the requested partition locally
15/03/24 13:25:31 INFO rdd.HadoopRDD: Input split: hdfs://master:9000/tmp/wordcount.txt:0+26
15/03/24 13:25:31 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
15/03/24 13:25:31 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
15/03/24 13:25:31 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
15/03/24 13:25:31 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
15/03/24 13:25:31 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
15/03/24 13:25:32 INFO spark.SparkContext: Job finished: first at :15, took 0.397477806 s
res1: String = hello world

scala> rdd_a.collect()
15/03/24 14:00:32 INFO mapred.FileInputFormat: Total input paths to process : 1
15/03/24 14:00:32 INFO spark.SparkContext: Starting job: collect at :15
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Got job 0 (collect at :15) with 2 output partitions (allowLocal=false)
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Final stage: Stage 0(collect at :15)
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Submitting Stage 0 (MappedRDD[1] at textFile at :12), which has no missing parents
15/03/24 14:00:32 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 0 (MappedRDD[1] at textFile at :12)
15/03/24 14:00:32 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/03/24 14:00:32 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 0 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:00:32 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 1725 bytes in 5 ms
15/03/24 14:00:32 INFO scheduler.TaskSetManager: Starting task 0.0:1 as TID 1 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:00:32 INFO scheduler.TaskSetManager: Serialized task 0.0:1 as 1725 bytes in 0 ms
15/03/24 14:00:38 INFO scheduler.DAGScheduler: Completed ResultTask(0, 1)
15/03/24 14:00:38 INFO scheduler.TaskSetManager: Finished TID 1 in 5942 ms on slave2 (progress: 1/2)
15/03/24 14:00:38 INFO scheduler.TaskSetManager: Finished TID 0 in 5974 ms on slave2 (progress: 2/2)
15/03/24 14:00:38 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
15/03/24 14:00:38 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)
15/03/24 14:00:38 INFO scheduler.DAGScheduler: Stage 0 (collect at :15) finished in 6.015 s
15/03/24 14:00:38 INFO spark.SparkContext: Job finished: collect at :15, took 6.133297026 s
res0: Array[String] = Array(hello world, hello world1, hello world1, hello world1, "")
scala> val rdd_b = rdd_a.flatMap((line => line.split(" "))).map(word => (word, 1))
rdd_b: org.apache.spark.rdd.RDD[(String, Int)] = MappedRDD[3] at map at :14
scala> rdd_b.collect()
15/03/24 14:11:41 INFO spark.SparkContext: Starting job: collect at :17
15/03/24 14:11:41 INFO scheduler.DAGScheduler: Got job 1 (collect at :17) with 2 output partitions (allowLocal=false)
15/03/24 14:11:41 INFO scheduler.DAGScheduler: Final stage: Stage 1(collect at :17)
15/03/24 14:11:41 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/24 14:11:41 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 14:11:41 INFO scheduler.DAGScheduler: Submitting Stage 1 (MappedRDD[3] at map at :14), which has no missing 
parents15/03/24 14:11:41 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 1 (MappedRDD[3] at map at :14)
15/03/24 14:11:41 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Starting task 1.0:0 as TID 2 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Serialized task 1.0:0 as 1816 bytes in 0 ms
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Starting task 1.0:1 as TID 3 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Serialized task 1.0:1 as 1816 bytes in 0 ms
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Finished TID 2 in 177 ms on slave2 (progress: 1/2)
15/03/24 14:11:42 INFO scheduler.DAGScheduler: Completed ResultTask(1, 0)
15/03/24 14:11:42 INFO scheduler.DAGScheduler: Completed ResultTask(1, 1)
15/03/24 14:11:42 INFO scheduler.TaskSetManager: Finished TID 3 in 207 ms on slave2 (progress: 2/2)
15/03/24 14:11:42 INFO scheduler.DAGScheduler: Stage 1 (collect at :17) finished in 0.209 s
15/03/24 14:11:42 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
15/03/24 14:11:42 INFO spark.SparkContext: Job finished: collect at :17, took 0.279714483 s
res1: Array[(String, Int)] = Array((hello,1), (world,1), (hello,1), (world1,1), (hello,1), (world1,1), (hello,1), (world1,1), 
("",1))
scala> val rdd_c = rdd_b.reduceByKey((a, b) => a + b)
rdd_c: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[6] at reduceByKey at :16
scala> rdd_c.collect()
15/03/24 14:14:42 INFO spark.SparkContext: Starting job: collect at :19
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Registering RDD 4 (reduceByKey at :16)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Got job 2 (collect at :19) with 2 output partitions (allowLocal=false)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Final stage: Stage 2(collect at :19)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Parents of final stage: List(Stage 3)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Missing parents: List(Stage 3)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Submitting Stage 3 (MapPartitionsRDD[4] at reduceByKey at :16), which 
has no missing parents15/03/24 14:14:43 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 3 (MapPartitionsRDD[4] at reduceByKey at 
:16)15/03/24 14:14:43 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 with 2 tasks
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Starting task 3.0:0 as TID 4 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Serialized task 3.0:0 as 2074 bytes in 36 ms
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Starting task 3.0:1 as TID 5 on executor 1: slave2 (NODE_LOCAL)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Serialized task 3.0:1 as 2074 bytes in 0 ms
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Finished TID 4 in 282 ms on slave2 (progress: 1/2)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Completed ShuffleMapTask(3, 0)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Finished TID 5 in 241 ms on slave2 (progress: 2/2)
15/03/24 14:14:43 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool 
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Completed ShuffleMapTask(3, 1)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Stage 3 (reduceByKey at :16) finished in 0.286 s
15/03/24 14:14:43 INFO scheduler.DAGScheduler: looking for newly runnable stages
15/03/24 14:14:43 INFO scheduler.DAGScheduler: running: Set()
15/03/24 14:14:43 INFO scheduler.DAGScheduler: waiting: Set(Stage 2)
15/03/24 14:14:43 INFO scheduler.DAGScheduler: failed: Set()
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Missing parents for Stage 2: List()
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Submitting Stage 2 (MapPartitionsRDD[6] at reduceByKey at :16), which 
is now runnable15/03/24 14:14:43 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 2 (MapPartitionsRDD[6] at reduceByKey at 
:16)15/03/24 14:14:43 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 with 2 tasks
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Starting task 2.0:0 as TID 6 on executor 1: slave2 (PROCESS_LOCAL)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Serialized task 2.0:0 as 1953 bytes in 1 ms
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Starting task 2.0:1 as TID 7 on executor 0: slave1 (PROCESS_LOCAL)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Serialized task 2.0:1 as 1953 bytes in 0 ms
15/03/24 14:14:43 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@slave2:374
0415/03/24 14:14:43 INFO spark.MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 136 bytes
15/03/24 14:14:43 INFO scheduler.DAGScheduler: Completed ResultTask(2, 0)
15/03/24 14:14:43 INFO scheduler.TaskSetManager: Finished TID 6 in 211 ms on slave2 (progress: 1/2)
15/03/24 14:14:45 INFO spark.MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@slave1:57339
15/03/24 14:14:46 INFO scheduler.DAGScheduler: Completed ResultTask(2, 1)
15/03/24 14:14:46 INFO scheduler.TaskSetManager: Finished TID 7 in 3192 ms on slave1 (progress: 2/2)
15/03/24 14:14:46 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool 
15/03/24 14:14:46 INFO scheduler.DAGScheduler: Stage 2 (collect at :19) finished in 3.193 s
15/03/24 14:14:46 INFO spark.SparkContext: Job finished: collect at :19, took 3.634568622 s
res2: Array[(String, Int)] = Array(("",1), (hello,4), (world,1), (world1,3))
scala> rdd_c.cache()
res3: rdd_c.type = MapPartitionsRDD[6] at reduceByKey at :16
scala> rdd_c.saveAsTextFile("hdfs://master:9000/tmp/spark_result")
15/03/24 14:17:57 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
15/03/24 14:17:57 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
15/03/24 14:17:57 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
15/03/24 14:17:57 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
15/03/24 14:17:57 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
15/03/24 14:17:58 INFO spark.SparkContext: Starting job: saveAsTextFile at :19
15/03/24 14:17:58 INFO scheduler.DAGScheduler: Got job 3 (saveAsTextFile at :19) with 2 output partitions (allowLocal
=false)15/03/24 14:17:58 INFO scheduler.DAGScheduler: Final stage: Stage 4(saveAsTextFile at :19)
15/03/24 14:17:58 INFO scheduler.DAGScheduler: Parents of final stage: List(Stage 5)
15/03/24 14:17:58 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 14:17:58 INFO scheduler.DAGScheduler: Submitting Stage 4 (MappedRDD[8] at saveAsTextFile at :19), which has 
no missing parents15/03/24 14:17:58 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 4 (MappedRDD[8] at saveAsTextFile at :19)15/03/24 14:17:58 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 2 tasks
15/03/24 14:17:58 INFO scheduler.TaskSetManager: Starting task 4.0:0 as TID 8 on executor 0: slave1 (PROCESS_LOCAL)
15/03/24 14:17:58 INFO scheduler.TaskSetManager: Serialized task 4.0:0 as 11506 bytes in 1 ms
15/03/24 14:17:58 INFO scheduler.TaskSetManager: Starting task 4.0:1 as TID 9 on executor 1: slave2 (PROCESS_LOCAL)
15/03/24 14:17:58 INFO scheduler.TaskSetManager: Serialized task 4.0:1 as 11506 bytes in 0 ms
15/03/24 14:17:58 INFO storage.BlockManagerInfo: Added rdd_6_1 in memory on slave2:37855 (size: 216.0 B, free: 297.0 MB)
15/03/24 14:17:58 INFO storage.BlockManagerInfo: Added rdd_6_0 in memory on slave1:48694 (size: 408.0 B, free: 297.0 MB)
15/03/24 14:17:58 INFO scheduler.TaskSetManager: Finished TID 9 in 653 ms on slave2 (progress: 1/2)
15/03/24 14:17:58 INFO scheduler.DAGScheduler: Completed ResultTask(4, 1)
15/03/24 14:18:00 INFO scheduler.DAGScheduler: Completed ResultTask(4, 0)
15/03/24 14:18:00 INFO scheduler.TaskSetManager: Finished TID 8 in 2104 ms on slave1 (progress: 2/2)
15/03/24 14:18:00 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool 
15/03/24 14:18:00 INFO scheduler.DAGScheduler: Stage 4 (saveAsTextFile at :19) finished in 2.105 s
15/03/24 14:18:00 INFO spark.SparkContext: Job finished: saveAsTextFile at :19, took 2.197440038 s

[hadoop@master ~]$ hadoop dfs -cat /tmp/spark_result/*
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

15/03/24 14:19:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java cla
sses where applicable(,1)
(hello,4)
(world,1)
(world1,3)

查看作业 http://192.168.1.2:4040/stages/


Spark集群独立模式HA_第6张图片


基于FileSystem的冗余

[hadoop@master ~]$ cd spark/conf/
# 修改spark-env.sh
JAVA_HOME=/usr/java/jdk
SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=FILESYSTEM -Dspark.deploy.recoveryDirectory=/app/hadoop/spark/recovery"
SPARK_MASTER_IP=master
SPARK_MASTER_PORT=7077
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=512m
MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}


[root@master ~]# mkdir /app/hadoop/spark/recovery -p
[root@master ~]# chown -R hadoop.hadoop /app/hadoop/spark/recovery/

# slave1,slave2做相同的操作

[hadoop@master ~]$ cd /home/hadoop/spark/sbin/
[hadoop@master sbin]$ ./stop-all.sh 
slave2: stopping org.apache.spark.deploy.worker.Worker
slave1: stopping org.apache.spark.deploy.worker.Worker
stopping org.apache.spark.deploy.master.Master
[hadoop@master sbin]$ ./start-all.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.
apache.spark.deploy.master.Master-1-master.outslave1: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave1.outslave2: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave2.out


模拟故障

[hadoop@master ~]$ spark-shell
scala> val rdd1 = sc.textFile("hdfs://master:9000/tmp/wordcount.txt")
15/03/24 19:57:04 INFO storage.MemoryStore: ensureFreeSpace(70225) called with curMem=141503, maxMem=311387750
15/03/24 19:57:04 INFO storage.MemoryStore: Block broadcast_1 stored as values to memory (estimated size 68.6 KB, free 296.8 MB)
rdd1: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at :12

scala> rdd1.first()
15/03/24 19:57:06 INFO mapred.FileInputFormat: Total input paths to process : 1
15/03/24 19:57:06 INFO spark.SparkContext: Starting job: first at :15
15/03/24 19:57:06 INFO scheduler.DAGScheduler: Got job 0 (first at :15) with 1 output partitions (allowLocal=true)
15/03/24 19:57:06 INFO scheduler.DAGScheduler: Final stage: Stage 0(first at :15)
15/03/24 19:57:06 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/24 19:57:06 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 19:57:06 INFO scheduler.DAGScheduler: Computing the requested partition locally
15/03/24 19:57:06 INFO rdd.HadoopRDD: Input split: hdfs://master:9000/tmp/wordcount.txt:0+26
15/03/24 19:57:06 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
15/03/24 19:57:06 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
15/03/24 19:57:06 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
15/03/24 19:57:06 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
15/03/24 19:57:06 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
15/03/24 19:57:06 INFO spark.SparkContext: Job finished: first at :15, took 0.320624426 s
res1: String = hello world

[hadoop@master ~]$ jps
3543 QuorumPeerMain
3631 ResourceManager
3388 SecondaryNameNode
10261 Jps
9935 Master
10071 SparkSubmit
3245 NameNode
[hadoop@master ~]$ kill 9935

触发故障

Spark集群独立模式HA_第7张图片

重新启动Master

[hadoop@master ~]$ cd spark/sbin/
[hadoop@master sbin]$ ./start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-master.out


查看数据是否还存在

scala> rdd1.count()
15/03/24 20:00:02 INFO spark.SparkContext: Starting job: count at :15
15/03/24 20:00:02 INFO scheduler.DAGScheduler: Got job 1 (count at :15) with 2 output partitions (allowLocal=false)
15/03/24 20:00:02 INFO scheduler.DAGScheduler: Final stage: Stage 1(count at :15)
15/03/24 20:00:02 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/24 20:00:02 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/24 20:00:02 INFO scheduler.DAGScheduler: Submitting Stage 1 (MappedRDD[3] at textFile at :12), which has no mis
sing parents15/03/24 20:00:02 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 1 (MappedRDD[3] at textFile at :
12)15/03/24 20:00:02 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
15/03/24 20:00:02 INFO scheduler.TaskSetManager: Starting task 1.0:0 as TID 0 on executor 1: slave1 (NODE_LOCAL)
15/03/24 20:00:02 INFO scheduler.TaskSetManager: Serialized task 1.0:0 as 1717 bytes in 4 ms
15/03/24 20:00:02 INFO scheduler.TaskSetManager: Starting task 1.0:1 as TID 1 on executor 0: slave2 (NODE_LOCAL)
15/03/24 20:00:02 INFO scheduler.TaskSetManager: Serialized task 1.0:1 as 1717 bytes in 1 ms
15/03/24 20:00:04 INFO scheduler.TaskSetManager: Finished TID 1 in 2530 ms on slave2 (progress: 1/2)
15/03/24 20:00:04 INFO scheduler.DAGScheduler: Completed ResultTask(1, 1)
15/03/24 20:00:04 INFO scheduler.DAGScheduler: Completed ResultTask(1, 0)
15/03/24 20:00:04 INFO scheduler.TaskSetManager: Finished TID 0 in 2641 ms on slave1 (progress: 2/2)
15/03/24 20:00:04 INFO scheduler.DAGScheduler: Stage 1 (count at :15) finished in 2.645 s
15/03/24 20:00:04 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
15/03/24 20:00:04 INFO spark.SparkContext: Job finished: count at :15, took 2.778519654 s
res2: Long = 5

# 数据正常

# 查看备份文件
[hadoop@master sbin]$ cd /app/hadoop/spark/recovery/
[hadoop@master recovery]$ ls
app_app-20150324195542-0000  worker_worker-20150324195414-slave1-56995  worker_worker-20150324195414-slave2-33947


基于Zookeeper的HA,在这里3台节点,已经部署好zookeeper,并启动

[hadoop@master ~]$ cd /home/hadoop/spark/conf/
# 修改spark-env.conf
JAVA_HOME=/usr/java/jdk
SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=master:2181,slave1:2181,slave2:2181 -Dspark.deploy.zookeeper.dir=/app/hadoop/spark/zookeeper"
#SPARK_MASTER_IP=master
SPARK_MASTER_PORT=7077
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=512m
#MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}

# 在slave1,slave2执行相同的操作

# 在master节点重启spark
[hadoop@master ~]$ cd /home/hadoop/spark/sbin/
[hadoop@master sbin]$ ./stop-all.sh 
slave1: stopping org.apache.spark.deploy.worker.Worker
slave2: stopping org.apache.spark.deploy.worker.Worker
stopping org.apache.spark.deploy.master.Master
[hadoop@master sbin]$ ./start-all.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.
apache.spark.deploy.master.Master-1-master.outslave2: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave2.outslave1: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave1.out 

[hadoop@master sbin]$ jps
3543 QuorumPeerMain
3631 ResourceManager
3388 SecondaryNameNode
10692 Master
10812 Jps
3245 NameNode

# 在slave1上启动另一个master
[hadoop@slave1 sbin]$ ./start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-slave1.out
[hadoop@slave1 sbin]$ jps
4020 DataNode
4182 QuorumPeerMain
6435 Worker
6619 Jps
6545 Master
4262 NodeManager


查看master节点上,状态为ALIVE

Spark集群独立模式HA_第8张图片

查看slave1节点的master状态为:STANDBY

Spark集群独立模式HA_第9张图片


模拟故障,杀死master节点的Master进程

[hadoop@master sbin]$ jps
3543 QuorumPeerMain
3631 ResourceManager
10834 Jps
3388 SecondaryNameNode
10692 Master
3245 NameNode
[hadoop@master sbin]$ kill 10692

查看slave1上的Master状态变为ALIVE,已自动切换

Spark集群独立模式HA_第10张图片


使用spark-shell验证

[hadoop@master sbin]$ MASTER=spark://master:7077,slave1:7077 spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
15/03/24 20:42:28 INFO spark.SecurityManager: Changing view acls to: hadoop
15/03/24 20:42:28 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop)
15/03/24 20:42:28 INFO spark.HttpServer: Starting HTTP Server
15/03/24 20:42:28 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/03/24 20:42:28 INFO server.AbstractConnector: Started [email protected]:42811
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.0.2
      /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_25)
Type in expressions to have them evaluated.
Type :help for more information.
15/03/24 20:42:36 INFO spark.SecurityManager: Changing view acls to: hadoop
15/03/24 20:42:36 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop)
15/03/24 20:42:36 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/03/24 20:42:36 INFO Remoting: Starting remoting
15/03/24 20:42:37 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@master:35418]
15/03/24 20:42:37 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@master:35418]
15/03/24 20:42:37 INFO spark.SparkEnv: Registering MapOutputTracker
15/03/24 20:42:37 INFO spark.SparkEnv: Registering BlockManagerMaster
15/03/24 20:42:37 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20150324204237-ed6e
15/03/24 20:42:37 INFO storage.MemoryStore: MemoryStore started with capacity 297.0 MB.
15/03/24 20:42:37 INFO network.ConnectionManager: Bound socket to port 39310 with id = ConnectionManagerId(master,39310)
15/03/24 20:42:37 INFO storage.BlockManagerMaster: Trying to register BlockManager
15/03/24 20:42:37 INFO storage.BlockManagerInfo: Registering block manager master:39310 with 297.0 MB RAM
15/03/24 20:42:37 INFO storage.BlockManagerMaster: Registered BlockManager
15/03/24 20:42:37 INFO spark.HttpServer: Starting HTTP Server
15/03/24 20:42:37 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/03/24 20:42:37 INFO server.AbstractConnector: Started [email protected]:54434
15/03/24 20:42:37 INFO broadcast.HttpBroadcast: Broadcast server started at http://192.168.1.2:54434
15/03/24 20:42:37 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-9c9136b5-274f-4ce0-82ba-4eeabae0e392
15/03/24 20:42:37 INFO spark.HttpServer: Starting HTTP Server
15/03/24 20:42:37 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/03/24 20:42:37 INFO server.AbstractConnector: Started [email protected]:39100
15/03/24 20:42:38 INFO server.Server: jetty-8.y.z-SNAPSHOT
15/03/24 20:42:38 INFO server.AbstractConnector: Started [email protected]:4040
15/03/24 20:42:38 INFO ui.SparkUI: Started SparkUI at http://master:4040
15/03/24 20:42:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/03/24 20:42:39 INFO client.AppClient$ClientActor: Connecting to master spark://master:7077...
15/03/24 20:42:39 INFO client.AppClient$ClientActor: Connecting to master spark://slave1:7077...
15/03/24 20:42:39 INFO repl.SparkILoop: Created spark context..
15/03/24 20:42:40 WARN client.AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@master:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://spar
kMaster@master:7077]15/03/24 20:42:40 WARN client.AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@master:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://spar
kMaster@master:7077]15/03/24 20:42:40 WARN client.AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@master:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://spar
kMaster@master:7077]15/03/24 20:42:40 WARN client.AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@master:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://spar
kMaster@master:7077]Spark context available as sc.

scala> 15/03/24 20:42:40 INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20150324204239-0000
15/03/24 20:42:40 INFO client.AppClient$ClientActor: Executor added: app-20150324204239-0000/0 on worker-20150324202125-slave2-60861 (slave2:60861) with 1 cores
15/03/24 20:42:40 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150324204239-0000/0 on hostPort slave2:60861 with 1 cores, 512.0 MB RAM
15/03/24 20:42:40 INFO client.AppClient$ClientActor: Executor added: app-20150324204239-0000/1 on worker-20150324202125-slave1-48347 (slave1:48347) with 1 cores
15/03/24 20:42:40 INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app-20150324204239-0000/1 on hostPort slave1:48347 with 1 cores, 512.0 MB RAM
15/03/24 20:42:40 INFO client.AppClient$ClientActor: Executor updated: app-20150324204239-0000/0 is now RUNNING
15/03/24 20:42:40 INFO client.AppClient$ClientActor: Executor updated: app-20150324204239-0000/1 is now RUNNING
15/03/24 20:42:45 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@slave2:56126/user/Executor#251519544] with ID 0
15/03/24 20:42:46 INFO storage.BlockManagerInfo: Registering block manager slave2:42208 with 297.0 MB RAM
15/03/24 20:42:51 INFO cluster.SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@slave1:36476/user/Executor#1937793409] with ID 1
15/03/24 20:42:53 INFO storage.BlockManagerInfo: Registering block manager slave1:40644 with 297.0 MB RAM


scala>


发现使用正常


查看zookeeper上面的注册,信息

[hadoop@master bin]$ ./zkCli.sh
[zk: localhost:2181(CONNECTED) 3] ls /app/hadoop/spark/zookeeper
[master_status, leader_election]


重新启动master上面的Master进程

[hadoop@master sbin]$ ./start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-master.out

发现已经变为STANDBY

Spark集群独立模式HA_第11张图片



配置历史任务服务器

[hadoop@master ~]$ cd /home/hadoop/spark/conf/
[hadoop@master conf]$ cp spark-defaults.conf.template spark-defaults.conf

# 修改spark-defaults.conf
spark.eventLog.enabled  true
spark.eventLog.dir      hdfs://master:9000/spark/log
spark.yarn.historyServer.address master:18080

# 将配置文件传送到slave1,slave2

# 创建日志目录
[hadoop@master ~]$ hdfs dfs -mkdir -p /spark/log
15/03/25 10:54:50 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java cla
sses where applicable[hadoop@master ~]$ hdfs dfs -ls /
15/03/25 10:54:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java cla
sses where applicableFound 3 items
drwxr-xr-x   - hadoop supergroup          0 2015-03-24 12:47 /hbase
drwxr-xr-x   - hadoop supergroup          0 2015-03-25 10:54 /spark
drwxrwx---   - hadoop supergroup          0 2015-03-24 14:17 /tmp

# 修改spark-env.conf文件
JAVA_HOME=/usr/java/jdk
#SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=master:2181,slave1:2181,slave2:218
1 -Dspark.deploy.zookeeper.dir=/app/hadoop/spark/zookeeper"SPARK_MASTER_IP=master
SPARK_MASTER_PORT=7077
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=512m
MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}

# 将配置文件传送到slave1,slave2


# 重新启动spark集群
[hadoop@master sbin]$ ./start-all.sh 
starting org.apache.spark.deploy.master.Master, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-hadoop-org.
apache.spark.deploy.master.Master-1-master.outslave2: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave2.outslave1: starting org.apache.spark.deploy.worker.Worker, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.worker.Worker-1-slave1.out[hadoop@master sbin]$ jps
2298 SecondaryNameNode
2131 NameNode
2593 JobHistoryServer
2481 ResourceManager
3125 Master
3214 Jps


# 启动historyserver
[hadoop@master sbin]$ ./start-history-server.sh hdfs://master:9000/spark/log
starting org.apache.spark.deploy.history.HistoryServer, logging to /home/hadoop/spark-1.0.2-bin-hadoop2/sbin/../logs/spark-had
oop-org.apache.spark.deploy.history.HistoryServer-1-master.out[hadoop@master sbin]$ jps
2298 SecondaryNameNode
2131 NameNode
2593 JobHistoryServer
3550 HistoryServer
2481 ResourceManager
3362 Master
3600 Jps

# 提交一个应用
[hadoop@master sbin]$ spark-shell
scala> val rdd1 = sc.textFile("hdfs://master:9000/tmp/wordcount.txt")
15/03/25 11:11:32 INFO storage.MemoryStore: ensureFreeSpace(180779) called with curMem=180731, maxMem=311387750
15/03/25 11:11:32 INFO storage.MemoryStore: Block broadcast_1 stored as values to memory (estimated size 176.5 KB, free 296.6 
MB)rdd1: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at :12
scala> rdd1.count()
15/03/25 11:11:57 INFO mapred.FileInputFormat: Total input paths to process : 1
15/03/25 11:11:57 INFO spark.SparkContext: Starting job: count at :15
15/03/25 11:11:57 INFO scheduler.DAGScheduler: Got job 0 (count at :15) with 2 output partitions (allowLocal=false)
15/03/25 11:11:57 INFO scheduler.DAGScheduler: Final stage: Stage 0(count at :15)
15/03/25 11:11:57 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/03/25 11:11:57 INFO scheduler.DAGScheduler: Missing parents: List()
15/03/25 11:11:57 INFO scheduler.DAGScheduler: Submitting Stage 0 (MappedRDD[3] at textFile at :12), which has no mis
sing parents15/03/25 11:11:57 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from Stage 0 (MappedRDD[3] at textFile at :
12)15/03/25 11:11:57 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/03/25 11:11:57 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 0 on executor 2: slave2 (NODE_LOCAL)
15/03/25 11:11:57 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 1717 bytes in 7 ms
15/03/25 11:11:57 INFO scheduler.TaskSetManager: Starting task 0.0:1 as TID 1 on executor 0: slave1 (NODE_LOCAL)
15/03/25 11:11:57 INFO scheduler.TaskSetManager: Serialized task 0.0:1 as 1717 bytes in 1 ms
15/03/25 11:12:04 INFO scheduler.TaskSetManager: Finished TID 0 in 6578 ms on slave2 (progress: 1/2)
15/03/25 11:12:04 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)
15/03/25 11:12:04 INFO scheduler.DAGScheduler: Completed ResultTask(0, 1)
15/03/25 11:12:04 INFO scheduler.TaskSetManager: Finished TID 1 in 7216 ms on slave1 (progress: 2/2)
15/03/25 11:12:04 INFO scheduler.DAGScheduler: Stage 0 (count at :15) finished in 7.232 s
15/03/25 11:12:04 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
15/03/25 11:12:04 INFO spark.SparkContext: Job finished: count at :15, took 7.564410596 s
res1: Long = 5
scala> sc.stop()
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/metrics/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/kill,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/static,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/json,null}
15/03/25 11:13:06 INFO handler.ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages,null}
15/03/25 11:13:06 INFO ui.SparkUI: Stopped Spark web UI at http://master:4040
15/03/25 11:13:06 INFO scheduler.DAGScheduler: Stopping DAGScheduler
15/03/25 11:13:06 INFO cluster.SparkDeploySchedulerBackend: Shutting down all executors
15/03/25 11:13:06 INFO cluster.SparkDeploySchedulerBackend: Asking each executor to shut down
15/03/25 11:13:08 WARN thread.QueuedThreadPool: 1 threads could not be stopped
15/03/25 11:13:08 INFO thread.QueuedThreadPool: Couldn't stop Thread[qtp491327803-55 Acceptor0 [email protected]:46318,5
,main]15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.net.SocketException.(SocketException.java:47)
15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.net.PlainSocketImpl.socketAccept(Native Method)
15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:398)
15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.net.ServerSocket.implAccept(ServerSocket.java:530)
15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.net.ServerSocket.accept(ServerSocket.java:498)
15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.server.bio.SocketConnector.accept(SocketConnector.java:1
17)15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.server.AbstractConnector$Acceptor.run(AbstractConnector.
java:938)15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.util.thread.QueuedThreadPool.runJob(QueuedThreadPool.jav
a:608)15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at org.eclipse.jetty.util.thread.QueuedThreadPool$3.run(QueuedThreadPool.java
:543)15/03/25 11:13:08 INFO thread.QueuedThreadPool:  at java.lang.Thread.run(Thread.java:724)
15/03/25 11:13:08 INFO spark.MapOutputTrackerMasterActor: MapOutputTrackerActor stopped!
15/03/25 11:13:09 INFO network.ConnectionManager: Selector thread was interrupted!
15/03/25 11:13:09 INFO network.ConnectionManager: ConnectionManager stopped
15/03/25 11:13:09 INFO storage.MemoryStore: MemoryStore cleared
15/03/25 11:13:09 INFO storage.BlockManager: BlockManager stopped
15/03/25 11:13:09 INFO storage.BlockManagerMasterActor: Stopping BlockManagerMaster
15/03/25 11:13:09 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
15/03/25 11:13:09 INFO remote.RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
15/03/25 11:13:09 INFO remote.RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing rem
ote transports.15/03/25 11:13:10 INFO spark.SparkContext: Successfully stopped SparkContext

scala> exit
warning: there were 1 deprecation warning(s); re-run with -deprecation for details


查看历史任务信息,http://192.168.1.2:18080/

Spark集群独立模式HA_第12张图片