SparkStreaming之读取Kafka数据

本文主要记录使用SparkStreaming从Kafka里读取数据,并计算WordCount

主要内容:

  • 1.本地模式运行SparkStreaming
  • 2.yarn-client模式运行

相关文章:
1.Spark之PI本地
2.Spark之WordCount集群
3.SparkStreaming之读取Kafka数据
4.SparkStreaming之使用redis保存Kafka的Offset
5.SparkStreaming之优雅停止
6.SparkStreaming之写数据到Kafka
7.Spark计算《西虹市首富》短评词云

1.本地模式运行

object ScalaKafkaStreaming {
  def main(args: Array[String]): Unit = {
    // offset保存路径
    val checkpointPath = "D:\\hadoop\\checkpoint\\kafka-direct"

    val conf = new SparkConf()
      .setAppName("ScalaKafkaStream")
      .setMaster("local[2]")

    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val ssc = new StreamingContext(sc, Seconds(5))
    ssc.checkpoint(checkpointPath)

    val bootstrapServers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
    val groupId = "kafka-test-group"
    val topicName = "Test"
    val maxPoll = 500

    val kafkaParams = Map(
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> bootstrapServers,
      ConsumerConfig.GROUP_ID_CONFIG -> groupId,
      ConsumerConfig.MAX_POLL_RECORDS_CONFIG -> maxPoll.toString,
      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer]
    )

    val kafkaTopicDS = KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](Set(topicName), kafkaParams))

    kafkaTopicDS.map(_.value)
      .flatMap(_.split(" "))
      .map(x => (x, 1L))
      .reduceByKey(_ + _)
      .transform(data => {
        val sortData = data.sortBy(_._2, false)
        sortData
      })
      .print()

    ssc.start()
    ssc.awaitTermination()
  }
}

本地模式运行SparkStreaming每隔5s从Kafka读取500条数据并计算WorkCount,然后按次数降序排列,并将Offset保存在本地文件夹

创建Topic

kafka-topics.sh --create --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181/kafka --topic Test --partitions 3 --replication-factor 3

查看创建的Topic

kafka-topics.sh --describe --zookeeper hadoop1:2181,hadoop2:2181,hadoop3:2181/kafka

编写Kafka程序并往Topic里写数据

public class ProducerTest {
    private static final String[] WORDS = {
            "hello", "hadoop", "java", "kafka", "spark"
    };

    public static void main(String[] args) throws Exception {
        Properties props = new Properties();
        props.put("bootstrap.servers", "hadoop1:9092,hadoop2:9092,hadoop3:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        KafkaProducer kafkaProducer = new KafkaProducer(props);
        boolean flag = true;
        while (flag) {
            for (int i = 0; i < 500; i++) {
                //3、发送数据
                kafkaProducer.send(new ProducerRecord("Test", WORDS[new Random().nextInt(5)]));
            }
            kafkaProducer.flush();
            System.out.println("==========Kafka Flush==========");
            Thread.sleep(5000);
        }

        kafkaProducer.close();
    }
}

每5s写500条数据到Topic

运行结果如下:


SparkStreaming之读取Kafka数据_第1张图片

可以看到我们的程序可以正确运行了。

2.yarn-client模式运行

修改程序的checkpoint为hdfs上的目录

object ScalaKafkaStreaming {
  def main(args: Array[String]): Unit = {
    // offset保存路径
    val checkpointPath = "/data/output/checkpoint/kafka-direct"

    val conf = new SparkConf()
      .setAppName("ScalaKafkaStream")
      //.setMaster("local[2]")

    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val ssc = new StreamingContext(sc, Seconds(3))
    ssc.checkpoint(checkpointPath)

    val bootstrapServers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
    val groupId = "kafka-test-group"
    val topicName = "Test"
    val maxPoll = 20000

    val kafkaParams = Map(
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> bootstrapServers,
      ConsumerConfig.GROUP_ID_CONFIG -> groupId,
      ConsumerConfig.MAX_POLL_RECORDS_CONFIG -> maxPoll.toString,
      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer]
    )

    val kafkaTopicDS = KafkaUtils.createDirectStream(ssc, LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](Set(topicName), kafkaParams))

    kafkaTopicDS.map(_.value)
      .flatMap(_.split(" "))
      .map(x => (x, 1L))
      .reduceByKey(_ + _)
      .transform(data => {
        val sortData = data.sortBy(_._2, false)
        sortData
      })
      .print()

    ssc.start()
    ssc.awaitTermination()
  }
}

pom.xml文件


  
  
    org.apache.spark
    spark-core_2.11
    2.3.0
    provided
  

  
  
    org.apache.spark
    spark-streaming_2.11
    2.3.0
    provided
  

  
  
    org.apache.spark
    spark-streaming-kafka-0-10_2.11
    2.3.0
    compile
  


  
    
      maven-assembly-plugin
      
        false
        
          jar-with-dependencies
        
        
          
            
            
          
        
      
      
        
          make-assembly
          package
          
            assembly
          
        
      
    
    
      org.scala-tools
      maven-scala-plugin
      2.15.2
      
        
          scala-compile-first
          
            compile
          
          
            
              **/*.scala
            
          
        
        
          scala-test-compile
          
            testCompile
          
        
      
    
  

这里将spark-streaming-kafka-0-10_2.11打包进jar,不然运行时会报找不到一些类,也可以通过其他方式解决

上传jar,执行

./bin/spark-submit \
--class me.jinkun.scala.kafka.ScalaKafkaStreaming \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
/opt/soft-install/data/spark-yarn-1.0-SNAPSHOT.jar

运行过程可能会报如下错误:

Current usage: 114.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 GB virtual memory used. Killing container.

解决方式:参考https://blog.csdn.net/kaaosidao/article/details/77950125
我这里修改yarn-site.xml,加入如下配置


     yarn.nodemanager.vmem-pmem-ratio
     3

运行如下:

SparkStreaming之读取Kafka数据_第2张图片

说明程序已经正常启动,进入Yarn的管理界面可以看到正在执行任务 http://hadoop1:8088

SparkStreaming之读取Kafka数据_第3张图片
Yarn管理界面正在运行的作用

通过ID可以查看运行的日志


SparkStreaming之读取Kafka数据_第4张图片
SparkStreaming之读取Kafka数据_第5张图片
运行的结果

通过Tracking UI 可以看到Spark的管理界面


SparkStreaming之读取Kafka数据_第6张图片

运行如下命令停止SparkStreaming程序

yarn application -kill [appid]

3.checkpoint

SparkStreaming之读取Kafka数据_第7张图片

在我们设置的checkpoint文件夹里保存了最近5次的checkpoint,在线上程序一般保存到hdfs里。


SparkStreaming之读取Kafka数据_第8张图片

你可能感兴趣的:(SparkStreaming之读取Kafka数据)