2019 SDN上机第5次作业

1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:

描述官方教程实现了一个什么样的交换机功能?

实现交换机在各个端口发送它所接收到的数据包的功能

控制器设定交换机支持什么版本的OpenFlow?

OpenFlow v1.0

控制器设定了交换机如何处理数据包?

官方代码:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 
    def packet_in_handler(self, ev): 
        msg = ev.msg 
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions)
        dp.send_msg(out)

其中
packet_in_handler是新方法,它的作用是当Ryu收到OpenFlow packet_in消息时,将调用此方法。
set_ev_cls:修饰器,告诉Ryu什么时间调用它要修饰的那个函数。
ev.msg是表示packet_in数据结构的对象;
msg.dp是代表数据路径(开关)的对象;
dp.ofproto和dp.ofproto_parser是代表Ryu和交换机协商的OpenFlow协议的对象;
OFPActionOutput类与packet_out消息一起使用,以指定要从中发送数据包的交换机端口。
OFPPacketOut类用于构建packet_out消息;
send_msg()让Ryu建立在线数据格式结构并发送给交换机

2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

代码已补充完整:

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch(app_manager.RyuApp):
    # TODO define OpenFlow 1.0 version for the switch
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    def add_flow(self, datapath, in_port, dst, src, actions):
        ofproto = datapath.ofproto

        match = datapath.ofproto_parser.OFPMatch(
            in_port=in_port,
            dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))

        mod = datapath.ofproto_parser.OFPFlowMod(
            datapath=datapath, match=match, cookie=0,
            command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
            priority=ofproto.OFP_DEFAULT_PRIORITY,
            flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)

        # TODO send modified message out
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocol(ethernet.ethernet)

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        if eth.ethertype == ether_types.ETH_TYPE_IPV6:
            # ignore ipv6 packet
            return

        dst = eth.dst
        src = eth.src
        dpid = datapath.id
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = msg.in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        # TODO define the action for output
        actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ",
                             dpid, src, dst, msg.in_port, out_port)
            self.add_flow(datapath, msg.in_port, dst, src, actions)

        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        # TODO define the OpenFlow Packet Out
        out = datapath.ofproto_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=msg.in_port,
                                                   actions=actions, data=data)
        datapath.send_msg(out)

    print("PACKET_OUT...")

3.在mininet创建一个最简拓扑,并连接RYU控制器

2019 SDN上机第5次作业_第1张图片

from mininet.topo import Topo

class Mytopo(Topo):

    def __init__(self):

        Topo.__init__(self)

        sw=self.addSwitch('s1')

        count=1

        for i in range(2):

                host = self.addHost('h{}'.format(count))

                self.addLink(host,sw,1,count)

                count = count + 1

topos = {'mytopo': (lambda:Mytopo())}

输入以下命令

sudo  mn  --custom  '/home/w/Desktop/test5/test5.py'   --topo mytopo --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

2019 SDN上机第5次作业_第2张图片
还没有连接ryu控制器的时候,查看s1的流表:

未连接RYU控制器时查看s1的流表:

2019 SDN上机第5次作业_第3张图片

打开另一个终端,输入以下命令

ryu-manager SelfLearning.py

2019 SDN上机第5次作业_第4张图片

h1 ping h2
2019 SDN上机第5次作业_第5张图片

下发流表

 sudo ovs-ofctl dump-flows s1 

2019 SDN上机第5次作业_第6张图片

开启RYU控制器的终端会显示如下信息,可以看到目标的MAC地址,源的MAC地址,进入端口,输出端口等数据
2019 SDN上机第5次作业_第7张图片

5.写下你的实验体会

第一步就出现了很多问题,升级了python后mininet不能使用了,弄了很久,重新安装了mininet发现ryu不能使用,又发现pip也不能使用了,弄了挺久的
好在后面的操作比较简单,参考了老师给的资料之后成功完成,不过对实验还有不理解的地方,还要加倍努力

你可能感兴趣的:(2019 SDN上机第5次作业)