- 解析稳定率达99.99%!合合信息“大模型加速器2.0”助力AI打破“幻觉”
算法大数据人工智能图表表格
随着大模型在社会应用中逐渐普及,人们在享受便利的同时,也面临着“AI幻觉”产生的风险。训练数据是影响大模型“认知能力”的关键要素,近期,上海合合信息科技股份有限公司(简称“合合信息”)TextIn“大模型加速器2.0”版本正式上线,基于领先的智能文档处理技术,对复杂文档的版式、布局和元素进行精准解析及结构化处理,从数据源头降低大模型“幻觉”风险,让大模型在与人类的沟通中“更靠谱”。“大模型加速器2
- Android Camera 架构
2501_90226133
android架构
二、CameraApp层简述三、CameraFramework层简述四、CameraHal3子系统五、下面需要梳理的重点-正在进行一.AndroidCamera整体架构简述自Android8.0之后大多机型采用CameraAPI2HAL3架构,先盗改谷歌的一张图,读完整部代码后再看这张图,真的是很清晰,很简洁,很到位.原图:https://source.android.google.cn/devi
- 收入突破 5 万,从大专生到大模型开发-第二篇(下)
智码工坊
AI编程程序人生
第二篇下:实战案例拆解——我用AI干掉80%重复工作大家好,我是明聪,98年逆袭的大模型研发工程师,前Java转型幸存者,湖北荆州人,毕业武汉某职校。学习心得:突出“普通人破局”的真实挣扎深夜破防:我也想过放弃1:学RAG时,连续3天卡在向量数据库检索效果,甚至想“回去干Java算了”。直到发现LangChain-Chatchat开源项目,直接套用现成框架,才重拾信心。2:第一次面试被质疑“半路出
- C/C++学习路线概述
DustWind丶
C/C++c++
根据如下视频和文章总结:想做C语言/C++开发?这些才是你该学的东西!C语言/C++直通企业级开发的详细学习路线节选:肝了半个月,我整理出了这篇嵌入式开发学习学习路线+知识点梳理目录1C/C++学习概述1.1C语言的基础知识1.2C++的基础知识2C/C++编程学习四大件2.1数据结构和算法2.2操作系统2.3计算机网络2.3.1计算机网络分层2.3.2典型协议(以TCP/IP四层模型举例)2.4
- GitHub霸榜神器!NextChat领衔DeepSeek全栈开发范式
大禹智库
《向量数据库指南》《实战AI智能体》机器学习RAGAI智能体人工智能ManusdeepseekNextChat
一、项目概况与生态定位NextChat(原ChatGPT-Next-Web)是GitHub上斩获81.2K星标的现象级开源项目,定位为"轻量级AI助手终端",支持DeepSeek、Claude、GPT-4、Gemini等20+主流大模型。其核心价值在于以5MB超小客户端实现跨平台(Windows/Mac/Linux/iOS/Android)无缝衔接,同时提供云端一键部署方案,成为个人用户与企业私有
- nextjs 实现rag知识库检索增强的ai问答app
*goliter *
web开发学习人工智能
AI-Chat-一个基于LLM大语言模型的知识库问答系统项目源码:https://github.com/goliter/ai-chat项目简介AI-Chat是一个基于Next.js和React开发的现代化大语言模型的知识库问答系统。该平台提供了简易的对话界面,支持上传文件进行知识库的构建,让用户在与大语言模型进行问答时给与大模型知识库内的相关内容。主要功能上传文件构建属于自己的知识库支持doc,t
- 域名如何绑定服务
我真的不想做程序员
javajava后端开发语言服务器阿里云容器
目录一、理解域名与Java服务之间的关系二、DNS解析三、配置DNS记录四、Java服务的配置1.部署Java应用2.配置反向代理五、DNS解析六、验证绑定是否成功七、代码示例八、总结在现代网络应用中,域名和Java服务的绑定是实现用户友好访问和后台服务的关键步骤。本文将详细介绍这一过程,包括DNS解析、反向代理以及Java服务的配置,最后会展示代码示例和视觉化流程图。一、理解域名与Java服务之
- 动态规划算法求解背包问题的全面剖析
15号外媒
算法
摘要本文深入剖析动态规划算法在求解背包问题中的应用,详细阐述动态规划算法的基本原理、核心要素与解题步骤。通过对0-1背包问题和完全背包问题的具体分析,展示动态规划算法在解决背包问题上的高效性与独特优势。同时,结合实际案例进行算法实现与结果分析,并探讨算法的优化策略与拓展应用,旨在帮助读者全面掌握动态规划算法求解背包问题的方法与技巧。一、引言背包问题作为组合优化领域的经典问题,在资源分配、投资决策、
- 快速入手-基于Django的mysql操作(四)
神奇侠2024
djangodjango
1、数据的增删改查defadd(request):UserInfo.objects.create(username="admin",password="1234561",age=18)UserInfo.objects.create(username="admin2",password="1234562",age=19)UserInfo.objects.create(username="admin3
- MySQL 进阶学习文档
你曾经是少年
数据库
一、存储引擎1.1核心架构四层架构:连接层→服务层→引擎层→存储层插件式存储引擎:不同引擎独立管理数据存储,可动态选择1.2主流引擎对比特性InnoDB(默认)MyISAMMemory事务支持✅支持❌不支持❌不支持锁粒度行锁表锁表锁外键支持✅支持❌不支持❌不支持存储位置磁盘磁盘内存适用场景高并发事务读多写少临时数据缓存选择建议:优先选InnoDB(支持事务和外键)读多写少且无需事务选MyISAM临
- 使用大语言模型API在AI应用中的实现
qq_37836323
人工智能语言模型自然语言处理python
随着人工智能技术的迅速发展,大语言模型(LLM)在自然语言处理(NLP)领域的应用越来越广泛。本文将介绍如何使用大语言模型API来实现一些基础的AI应用,并提供一个简单的demo代码,帮助大家更好地理解和使用这些技术。大语言模型API简介大语言模型(如GPT-4)能够理解和生成类似人类的文本。这些模型可以应用于各种任务,包括文本生成、语言翻译、情感分析、对话系统等。为了方便国内用户访问这些强大的模
- python基于Django的旅游景点数据分析及可视化的设计与实现 7blk7
qq2295116502
pythondjango数据分析
目录项目介绍技术栈具体实现截图Scrapy爬虫框架关键技术和使用的工具环境等的说明解决的思路开发流程爬虫核心代码展示系统设计论文书写大纲详细视频演示源码获取项目介绍大数据分析是现下比较热门的词汇,通过分析之后可以得到更多深入且有价值的信息。现实的科技手段中,越来越多的应用都会涉及到大数据随着大数据时代的到来,数据挖掘、分析与应用成为多个行业的关键,本课题首先介绍了网络爬虫的基本概念以及技术实现方法
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- [NOIP2011 提高组] 铺地毯
Nerous_
刷题之路算法c++数据结构
题目描述为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有nnn张地毯,编号从111到nnn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。输入格式输入共n+2n+
- 二分查找算法在有序数组中的解题分析与优化
带给我一点小幸运
算法
摘要本文深入剖析二分查找算法在有序数组中的应用,详细阐述其基本原理、实现步骤与时间复杂度,通过实际案例展示其解题过程,并针对算法在实际应用中的常见问题提出优化策略,旨在帮助读者全面掌握二分查找算法,提升解决相关问题的能力。一、引言在计算机科学领域,查找算法是解决众多问题的基础。二分查找算法作为一种高效的查找方法,在有序数组的查找场景中具有显著优势。随着数据规模的不断增大,二分查找算法相较于其他查找
- 【NLP】 API在大语言模型中的应用
Nerous_
深度学习自然语言处理语言模型人工智能
大语言模型(LargeLanguageModels,LLMs)通过API(应用程序接口)为开发者提供了便捷的调用方式,使其能够快速集成自然语言处理能力到各类应用中。以下是API在LLM中的核心应用场景及技术实现细节:一、核心应用场景自然语言理解与生成应用示例:智能客服:解析用户问题并生成回复(如ChatGPTAPI)。内容创作:自动生成文章、广告文案或代码(如OpenAI的GPT-4)。技术实现:
- 数据结构、图论---数组模拟单链表 邻接表
wow_awsl_qwq
数据结构数据结构图论链表
数组模拟链表或者所谓的邻接表,实际上都是静态链表,以数组下标模拟模拟内存地址,使得可以一开始就给数组分配好连续的一大片空间,而使用中的“内存分配”实际上就是变成了简单的idx++比赛中使用静态链表代替指针型链可以减少内存分配带来的时间消耗,并且使用方式也比较简单比赛中的单链表或者邻接表也可以用vector实现,达到动态内存分配的效果,其实就是类似于指针链表,不过使用方式也比较简单直观比如图论模型:
- DeepSeek来袭!低代码+AI竟让程序员摸鱼接私单月入5W!
工业甲酰苯胺
低代码人工智能
目录一、引言:开启低代码+AI新时代二、DeepSeek与低代码、AI的关联(一)DeepSeek简介(二)低代码开发概述(三)AI赋能低代码三、低代码+AI开启私单赚钱大门(一)成功案例剖析(二)私单项目类型(三)赚钱模式解析四、实战:利用DeepSeek接私单(一)工具准备与环境搭建(二)需求分析与项目规划(三)低代码开发实战(四)AI技术融合应用(五)项目测试与交付五、挑战与应对策略(一)技
- 亿级分布式系统架构演进实战(七)- 横向扩展(安全防护设计)
power-辰南
java技术架构师成长专栏springboot分布式架构设计高并发安全防护
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)亿级分布式系统架构演进实战(五)-横向扩展(缓存策略设计)亿级分布式系统架构演进实战(六)-横向扩展(监控与日志体系)核心目标保障系统免受攻击,确保数据安全一、安全防护设计1.
- 时间序列分析的军火库:AutoTS、Darts、Kats、PaddleTS、tfts 和 FancyTS解析
赛卡
大数据人工智能深度学习python概率论数学建模
引言:时间序列分析的现代挑战时间序列分析在多个领域中扮演着关键角色,包括工程、金融、气象、工业预测等。随着开源工具的快速发展,开发者可以通过多种库快速实现时间序列预测与分析。本文将对AutoTS、Darts、Kats、PaddleTS、tfts和FancyTS六大主流库进行详细解析,并提供代码示例,帮助你根据实际需求选择最佳工具。核心库技术解析与场景化实践1.AutoTS:自动化时间序列预测技术亮
- 软件工程:数据字典
愚戏师
软件工程软件工程数据库
一、数据字典的核心作用定位:数据字典是数据流图(DFD)的补充说明文档,与DFD共同构成系统的逻辑模型。核心价值:消除二义性:明确数据流、存储、元素的定义,避免理解偏差。设计依据:为数据库设计、代码开发提供数据规范。团队协作:作为开发团队的共享词汇表,确保术语一致性。二、数据字典的四大组成要素1.数据流(DataFlow)定义:数据在系统中的流动路径。描述内容:来源与去向:起点(外部实体/处理)、
- 亿级分布式系统架构演进实战(五)- 横向扩展(缓存策略设计)
power-辰南
java技术架构师成长专栏多级缓存策略springcloud分布式系统缓存一致性高并发缓存问题解决方案
亿级分布式系统架构演进实战(一)-总体概要亿级分布式系统架构演进实战(二)-横向扩展(服务无状态化)亿级分布式系统架构演进实战(三)-横向扩展(数据库读写分离)亿级分布式系统架构演进实战(四)-横向扩展(负载均衡与弹性伸缩)核心目标降低数据库读压力,提升响应速度一、多级缓存架构客户端CDN/浏览器缓存本地应用缓存分布式缓存数据库缓冲池1.1客户端缓存缓存数据类型:•静态资源(JS/CSS/图片)•
- 数据分析面临的三大挑战该如何解决
銨靜菂等芐紶
数据挖掘大数据数据分析
转载自品略图书馆http://www.pinlue.com/article/2020/09/0712/2611202048648.html有效的分析已成为决定性因素,很明显,掌握它的人会蓬勃发展。但是,实现这一目标的过程并非没有障碍。最常见的数据分析挑战是什么?公司如何自信地应对它们?下面就来介绍一下。1、浏览预算限制数据分析领导者需要在当下采取行动,但同时也需要考虑未来。平衡这些需求要求他们在制
- 【轻松学C:编程小白的大冒险】— 09 运算符与表达式的实际应用
秋知叶i
#C语言c语言开发语言
在编程的艺术世界里,代码和灵感需要寻找到最佳的交融点,才能打造出令人为之惊叹的作品。而在这座秋知叶i博客的殿堂里,我们将共同追寻这种完美结合,为未来的世界留下属于我们的独特印记。【轻松学C:编程小白的大冒险】—09运算符与表达式的实际应用一、运算符家族大阅兵二、算术运算符:数学界的五虎上将1.加法运算符`+`2.减法运算符`-`3.乘法运算符`*`4.除法运算符`/`5.取模运算符`%`二、赋值运
- 用Python实现SFM
薄辉
pythonopencv计算机视觉人工智能图像处理
SFM(结构化光流法)是一种用于解决三维重建问题的方法,它可以根据许多二维图像和它们之间的相对位置,估计出三维场景的深度和摄像机的姿态。在Python中,你可以使用OpenCV库来实现SFM。下面是一个简单的例子,展示了如何使用OpenCV库的cv2.sfm_create函数来实现SFM:importcv2#读入图像,存入列表images中images=[]foriinrange(1,11):im
- 【数据治理】数据湖治理实践:腾讯云数据湖元数据实践指南
菜鸟蜀黍
数据治理大数据
最近数据湖非常的火,但是一旦没弄好,就会变成“数据沼泽”。如何避免“数据湖”变成“数据沼泽”呢?最好的办法就是治理先行。本文的内容主要包括四部分:1、数据湖背景概述,介绍腾讯数据湖的整体架构;2、数据湖统一元数据模块的详细架构实现;3、介绍腾讯云上元数据多租户的设计模式;4、介绍统一元数据的两大核心能力:在线数据目录和离线数据治理的功能。01什么是数据湖随着Snowflake公司股价高歌猛进和各大
- 使用Python轻松拆分PDF,每页独立成文件
AI航海家(Ethan)
pythonpythonpdf
使用Python轻松拆分PDF,每页独立成文件嗨,各位PDF爱好者!如果你曾经有想要拆分一个大PDF文件的想法,让每一页都成为独立的文件,那么这篇博客就是为你准备的!我们将使用Python中的一个非常强大的库–PyPDF2,把这些需求变得简单易行。PyPDF2登场首先,我们需要安装PyPDF2库。如果你还没有安装,别担心,只需要在终端运行以下命令:pipinstallPyPDF2安装好了吗?下面我
- 大模型在冠心病风险预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、大模型预测冠心病风险原理与方法2.1数据收集与预处理2.1.1数据来源2.1.2数据清洗与整理2.2特征工程2.2.1特征提取2.2.2特征选择与优化2.3模型选择与训练2.3.1常用模型介绍2.3.2模型训练过程三、术前风险预测与手术方案制定3.1术前风险预测指标与模型应用3.2基于风险预测的手术方案制定3.3案例分析
- html 5中哪个标签用于定义标题列表项,No.5 HTML常用标签
李诗旸
html5中哪个标签用于定义标题列表项
一、标题标签为了使网页更具有语义化,我们经常会在页面中用到标题标签。HTML提供了6个等级的网页标题,即至。我是一级标题我是二级标题我是三级标题我是四级标题我是五级标题我是六级标题单词head的缩写,意为头部、标题。标签语义:作为标题使用,并且依据重要性递减。特点:加了标题的文字会变的加粗,字号也会依次变大。一个标题独占一行。二、段落标签在网页中,要把文字有条理地显示出来,就需要将这些文字分段显示
- ios企业证书下载方法
html5
使用ios企业证书打包的IOS应用,可以不需要上架appstore即可安装在用户的苹果手机,可以放到一些测试分发平台进行扫码安装,比如香蕉云编或蒲公英等等。那么ios企业证书在什么地方可以下载呢?或者是怎么生成呢?企业证书一般需要使用自己的企业证书,因为假如用别人的企业证书,假如别人的企业证书过期了,或者注销了,所有安装了这个APP的手机将打不开这个APP,而且无法提示它升级。或者假如对方的证书用
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理