Java SE 8 并发增强

1.原子值

java5开始,提供了一些原子操作的类,如AtomicInteger、AtomicLong等

这些类提供了诸如incrementAndGet这样的原子操作方法。

单数如果想进行复杂操作,则需要使用compareAndSet进行循环处理

do {

   // .. 计算

} while (!atomicLong.compareAndSet(old, new));

在java8中提供了updateAndGet和accumulateAndGet方法

atomicLong,updateAndGet(x -> Max.max(x, observed));

atomicLong.accumulateAndGet(observed, Math::max);

同时也提供了返回原始值的对应方法:getAndUpdate、getAndAccumulate

------------------------------------------------------

 

当大量线程访问同一个原始值时,由于乐观锁重试次数太多会导致性能下降

Java8为此提供了LongAdder和LongAccumulator解决该问题

其思想为将初始值变为多个中立元素,计算时不同线程可以对不同元素进行操作,最后再将操作结果合并。

 

例如:

LongAccumulator adder = new LongAccumulator (Long::sum, 0);

adder.accumulate(value);

此时在LongAccumulator 中包含多个中立元素a1,a2...aN.该例子下中立元素初始值都为零。当调用accumulate方法累加value时,这些变量的其中之一被更新为ai = ai op v。在这个实力中ai = ai + v;

而最后调用get方法的时候,结果为a1 op a2 op ... aN. 在上述例子中为a1+a2+...aN

------------------------------------------------------

java8中还添加了StampedLock类实现乐观读

调用tryOptimisticRead方法时会获取一个印戳,当读取值并检测印戳有效,则可以使用这个值,否则会获得一个阻塞所有写锁的读锁

例:

复制代码
public class Vector {  
   private int size;  
   private Object[] elements;  
   private StampedLock lock = new StampedLock();  
   public Object get(int n) {  
        long stamp = lock.tryOptimisticRead();  
        Object[] currentElements = elements;  
        int currentSize = size;  
        if (!lock.validate(stamp)) { //  Someone else had a write lock  
             stamp = lock.readLock(); //  Get a pessimistic lock  
             currentElements = elements;  
             currentSize = size;  
             lock.unlockRead(stamp);  
        }  
    return n < currentSize ? currentElements[n] : null;  
  }  
...  
复制代码

2.ConcurrentHashMap改进

 

1. 更新值

concurrentHashMap在更新数值的时候虽然是线程安全的,但是在计算更新值的时候由于不能保证线程安全,更新的值可能是错误的。

一种补救措施是使用replace

例:

1 do {  
2    oldValue = map.get(word);  
3    newValue = oldValue == null ? 1 : oldValue + 1;  
4 } while (!map.replace(key, oldValue, newValue));  

此外还可以使用利用原子对象,例如CuncurrentHashMap

map.putIfAbsent(word, new LongAdder());  
map.get(word).increment();  

如果需要复杂计算,compute方法可以通过一个函数来计算新的值

map.compute(word, (k, v) -> v == null ? 1 : v + 1);  

xxxIfPresent和xxxIfAbsent方法分别表示已经存在值或者尚未存在值的情况下才进行操作

 

 

merge方法可以在key第一次加入时做一些特殊操作,第二个参数表示键尚未存在时的初始值

map.merge(word, 1L, (existingValue, newValue) -> existingValue + newValue);  

map.merge(word, 1L, Long::sum);  

--------------------------------------------------------------------------

 

2. 批量数据操作

・search会对每个键值对领用一个函数,直到函数返回非null,search会终止并返回函数结果

・reduce会通过提供的累计函数,将所有键值对组合起来

・foreach会对所有键值对应用一个函数

每个操作都有4个版本:

• operation Keys : 对键操作
• operation Values : 对值操作
• operation: 对键和值操作
• operation Entries : 对  Map.Entry 对象操作.

 

以search为例,有以下几个方法:

U searchKeys(long threshold, BiFunction f)
U searchValues(long threshold, BiFunction f)
U search(long threshold, BiFunction f)
U searchEntries(long threshold, BiFunction, ? extends U> f)

threshold为并行阀值,如果包含的元素数量超过阀值,操作会以并行方式执行,如果希望永远以单线程执行,请使用Long.MAX_VALUE

 

foreach和reduce方法除了上述形式外,还有另一种形式,可以提供一个转换器函数,首先会应用转换器函数,然后再将结果传递给消费者函数

map.forEach(threshold,  
(k, v) -> k + " -> " + v, // Transformer  
System.out::println); // Consumer  

 

Integer maxlength = map.reduceKeys(threshold,  
String::length, // Transformer  
Integer::max); // Accumulator  

对于int、long和double,reduce操作提供了专门的方法。以toXXX开头,需要将输入值转换为原始类型值,并指定一个默认值和累加器函数

long sum = map.reduceValuesToLong(threshold,  
Long::longValue, // Transformer to primitive type  
0, // Default value for empty map  
Long::sum); // Primitive type accumulator  

-----------------------------------------------------------------------------

 


3. Set视图

java8没有提供concurrenHashSet类,但是可以通过concurrentHashMap类通过虚假值获得一个映射

静态方法newKeySet会返回一个Set对象,它实际上是对ConcurrentHashMap对象的封装。

Set words = ConcurrentHashMap.newKeySet();  

如果你已经有一个映射,keySet方法会返回所有键的Set,但是你不能向这个set中添加元素,因为无法向map添加相应的值

 

于是,一个接收默认值的keySet方法可以解决上述问题,通过这个默认值向set中添加元素

Set words = map.keySet(1L);  
words.add("Java");  

key=java, value = 1L

 

 

 

3.并行数组操作

Arrays提供许多并行化操作

parallelSort可以进行并行排序,并且可以指定范围

1 String contents = new String(Files.readAllBytes(  
2 Paths.get("alice.txt")), StandardCharsets.UTF_8); // Read file into string  
3 String[] words = contents.split("[\\P{L}]+"); // Split along nonletters  
4 Arrays.parallelSort(words);  

 

 1 values.parallelSort(values.length / 2, values.length); // 对上半部排序  

 

parallelSetAll方法会根据提供的计算函数对参数values的每一个值进行计算并更新

Arrays.parallelSetAll(values, i -> i % 10);  
// Fills values with 0 1 2 3 4 5 6 7 8 9 0 1 2 . . . 

parallelPrefix将数组中每个元素替换为指定关联操作前缀的积累

假设array [1, 2, 3, 4, ...],执行完Arrays.parallelPrefix(values, (x, y) -> x * y)之后,array的结果为

[1, 1 × 2, 1 × 2 × 3, 1 × 2 × 3 × 4, ...]

 


4.可完成的Future

在过去,Future获取结果的方法为get,并且调用后会一直阻塞等待get返回结果

CompletableFuture提供了“当结果可用时,再按照提供的方式处理”的功能

1 CompletableFuture contents = readPage(url);  
2 CompletableFuture> links = contents.thenApply(Parser::getLinks);  

thenApply方法不会被阻塞,它会返回另一个Future对象,当第一个Future对象完成时,它的结果会发给getLinks方法

 

 

Future流水线类似Steam流水线,经过一个或多个转换过程,最后由一个终止操作结束。

如下代码可以启动一个流水线

1 CompletableFuture contents  
2 = CompletableFuture.supplyAsync(() -> blockingReadPage(url));  

另外还有一个runAsync方法,接收Runnable参数,返回CompletableFuture

 

 

接下来可以调用thenApply或者thenApplyAsync方法,在同一个线程或者另一个线程中运行另一个操作。

最终这些步骤执行完毕,需要将结果保存在某个地方,需要一个终止操作,例如:

1 CompletableFuture links  
2 = CompletableFuture.supplyAsync(() -> blockingReadPage(url))  
3 .thenApply(Parser::getLinks)  
4 .thenAccept(System.out::println);  

thenAccept方法接收一个Consumer接口(返回类型为void),理想情况下不需要调用Future的get方法

 

以下是一些常用方法:

Java SE 8 并发增强_第1张图片


thenCompose方法做的事就是,假设同时有两个调用链,T->CompletableFuture和U->CompletableFuture在连续调用的情况下,合并为T->CompletableFuture

类似的常用方法如下:

Java SE 8 并发增强_第2张图片

你可能感兴趣的:(Java SE 8 并发增强)