You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulate 4 kinds of commands:
• 1 X Y : move box X to the left to Y (ignore this if X is already the left of Y )
• 2 X Y : move box X to the right to Y (ignore this if X is already the right of Y )
• 3 X Y : swap box X and Y
• 4: reverse the whole line.
Commands are guaranteed to be valid, i.e. X will be not equal to Y . For example, if n = 6, after executing 1 1 4, the line becomes 2 3 1 4 5 6. Then after executing 2 3 5, the line becomes 2 1 4 5 3 6. Then after executing 3 1 6, the line becomes 2 6 4 5 3 1. Then after executing 4, then line becomes 1 3 5 4 6 2
Input
There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m (1 ≤ n,m ≤ 100,000). Each of the following m lines contain a command.
There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m (1 ≤ n,m ≤ 100,000). Each of the following m lines contain a command.
Output
For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to n from left to right.
Sample Input
6 4
For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to n from left to right.
Sample Input
6 4
1 1 4
2 3 5
3 1 6
4
6 3
1 1 4
2 3 5
3 1 6
100000 1
4
Sample Output
Case 1: 12
Sample Output
Case 1: 12
Case 2: 9
Case 3: 2500050000
思路:采用双向链表:用left[i]和right[i]分别表示编号为i的盒子左边和右边的盒子编号(如果是0,表示不存在),再使用link函数将两个节点连接
void link(int L, int R) { Right[L] = R; Left[R] = L; }
但操作4需另外讨论,为避免一次修改所有元素的指针,可增加一标记来表示是否执行过4.
此题与CSUOJ上的一题比较相似 点击打开链接
#include#include #include #include using namespace std; #define MAXN 100010 int Left[MAXN], Right[MAXN]; int m, n, cas; void link(int L, int R) { Right[L] = R; Left[R] = L; } int main() { while (cin >> n >> m) { for (int i = 1; i <= n; i++) { Left[i] = i - 1; Right[i] = (i + 1) % (n + 1); } Right[0] = 1; Left[0] = n; int op, x, y, inv = 0; while (m--) { cin >> op; if (op == 4) inv = !inv; else { cin >> x >> y; if (op == 3 && Right[y] == x)swap(x, y); if (op != 3 && inv)op = 3 - op; if (op == 1 && x == Left[y])continue; if (op == 2 && x == Right[y])continue; int lx = Left[x], rx = Right[x], ly = Left[y], ry = Right[y]; if (op == 1) { link(lx, rx); link(ly, x); link(x, y); } else if (op == 2) { link(lx, rx); link(y, x); link(x, ry); } else if (op == 3) { if (Right[x] == y){ link(lx, y); link(y, x); link(x, ry); } else { link(lx, y); link(y, rx); link(ly, x); link(x, ry); } } } } int b = 0; long long ans = 0; for (int i = 1; i <= n; i++) { b = Right[b]; if (i % 2 == 1) ans += b; } if (inv&&n % 2 == 0) ans = (long long)n*(n + 1) / 2 - ans; printf("Case %d: %lld\n", ++cas, ans); } return 0; }