本文从本人的163博客搬迁至此。
接下来用USB-6009和LabVIEW实现对二极管最重要的特性曲线“V-I特性曲线”的测试和绘制。
一、什么是二极管V-I特性曲线
康华光版的《电子技术基础——模拟部分》这样介绍二极管的V-I特性:在二极管正向特性(在PN结两端施加N正P负的电压时的特性)的起始部分,由于正向电压较小,外电场还不足以克服PN结的内电场,因而这时的正向电流几乎为零,二极管呈现出一个大电阻,好像一个门坎。硅管的门坎电压Vth(又称死区电压)约为0.5V,锗管的Vth约为0.1V,当正向电压大于Vth时,内电场大为削弱,电流因而迅速增长。所谓“V-I特性曲线”是指正向电压和正向电流之间的关系。
二、测试电路
V-I特性曲线是二极管电流I和压降V之间的关系,只有一个自变量和一个因变量,是二维平面上的曲线。测试电路需要通过USB-6009的DAC控制流过二极管的电流,同时通过ADC测量其上的压降来绘制V-I曲线。和绘制三极管的输出特性曲线一样,可以通过由运放构成的反馈控制电路来控制流过二极管的正向电流,但测试普通二极管的V-I曲线时,一般要求测试电流达到100mA以上,无法由运放直接产生,需借用晶体管放大输出电流。我设计了图1所示的测试电路。
图1 二极管V-I特性测试电路
其中DI_CTL是由USB-6009的DAC输出的电流控制电压。D_test是被试二极管,采用常见整流二极管1N4007,其两端连接的AI3和AI7是USB-6009的ADC的一对差分输入端,用于测试D_test两端的电势差Vdt。Rd1是电流测试电阻,其作用是将流过被试二极管的电流ID转换为电压VD1,从而形成电流负反馈通路。为防止Rd1上功耗过大造成损毁,Rd1取值较小,仅为0.1欧姆。在500mA电流条件下,其上的压降也仅为50mV,很难与USB-6009的DAC输出的控制电压形成比较,因此需要先通过运放OP_dA构成的同相放大电路来将Rd1上的测试电压VD1放大成VD2。其增益G=(Rd3+Rd2)/Rd2=31.3倍,可将流过Rd1的500mA电流转换为1.56V输出电压。运算放大器OP_dB构成整个负反馈电路的误差放大环节,其作用是放大实际电流与USB-6009的DAC输出的控制电流的电压之间的误差,并将放大后的误差用于控制功率P沟道MOS管MOSP输出电流。根据负反馈系统的分析方法来分析图1的工作原理。
1、对运放OP_dB应用“虚短”的原则:OP_dA输出的VD2应该等于USB-6009输出的控制电压(也就是网络标号为DI_CTL处的电压VDI_CTL),当改变VDI_CTL时,就可以改变流过D_test的电流ID。电流ID和电压VDI_CTL之间的关系为:
ID=VDI_CTL/Rd1 (1)
2、上述电路使用虚短的前提之一是,整个系统是电流负反馈系统:但ID增加时VD1和 VD2也将增加,将使OP_dB的同相端电压增加,从而将使P欧沟道MOS管的栅极电压上升,并减少其打开的程度从而降低ID,并最终构成负反馈系统。
3、上述电路使用虚短的前提之二是,整个系统的稳定性。Cd1具有保证闭环稳定的作用,它可以降低高频信号的开环增益,从而整个系统在高频段发生自激振荡。
另外,这个电路值得注意的地方还在于,这是一个单电源电路,但电路的参考点却是“地电势”。具体体现在:
1、从Rd1上端得到的VD1是一个很小的电压,可能仅有几个mV,要使用只有单电源的运放拾取这个电压是有一定困难的,但LM358的共模电压可达负电源电压,因此能够拾取和放大VD1。
2、由于电流测试电阻Rd1安装在被测二极管和地之间,就不可能采用单端测量方式测量二极管上的压降,正好USB-6009提供了差分测量方式,将两个差分输入端分别连接在被测对象的两端,可以将两个输入端之间的共模电压抑制掉,从而直接得到被测对象两端的电势差。
三、测试程序
1、测试程序流程图如图2所示
图2 测试程序流程图
2、测试电流ID的设置
USB-6009中的DAC通过控制VDI_CTL实现对测试电流ID的控制,在LabVIEW中通过公式节点实现VDI_CTL和ID之间的换算,具体如图3所示:
图3 实现测试电流ID和控制电压换算的公式节点
图4 差分模式采集电压的程序框图
图5 设置测试电流程序框图
图6 读取二极管压降程序框图
图7 实际测试得到的二极管VI特性曲线