- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 搜广推校招面经五十四
Y1nhl
搜广推面经搜索算法python推荐算法机器学习人工智能
美团推荐算法一、手撕Transformer的位置编码1.1.位置编码的作用Transformer模型没有显式的序列信息(如RNN的循环结构),因此需要通过位置编码(PositionalEncoding)为输入序列中的每个位置添加位置信息。位置编码的作用是:提供序列位置信息:帮助模型理解输入序列中元素的顺序。保持唯一性和连续性:确保每个位置的位置编码是唯一的,且相邻位置的位置编码是连续的。1.2.位
- 搜广推校招面经五十三
Y1nhl
搜广推面经python机器学习人工智能推荐算法搜索算法算法
小红书推荐算法一、ESMM(EntireSpaceMulti-TaskModel)ESMM(EntireSpaceMulti-TaskModel)是一种用于解决推荐系统中多任务学习问题的模型。它由阿里巴巴团队提出,主要用于处理点击率(CTR)和转化率(CVR)的联合预测问题。1.1.背景在推荐系统中,CTR和CVR是两个重要的指标:CTR(Click-ThroughRate):用户点击广告的概率。
- EnerVerse:智元机器人提出首个机器人4D世界模型,在动作规划任务中达到SOTA水平
强化学习曾小健
机器人
EnerVerse:智元机器人提出首个机器人4D世界模型,在动作规划任务中达到SOTA水平PNP机器人PNP机器人2025年02月10日21:04上海本文来自:公众号智元机器人https://sites.google.com/view/enerverse,出于学术/技术分享进行转载,如有侵权,联系删文。EnerVerse的科研核心团队由智元机器人研究院的具身算法精英组成。黄思渊,作为上海交通大学与
- Pytorch使用手册-DCGAN 指南(专题十四)
AI专题精讲
Pytorch入门到精通pytorch人工智能python
1.Introduction本教程将通过一个示例介绍DCGANs(深度卷积生成对抗网络)。我们将训练一个生成对抗网络(GAN),在给它展示大量真实名人照片后,它能够生成新的“名人”图片。这里的大部分代码来源于PyTorch官方示例中的DCGAN实现,而本文档将对该实现进行详细解释,并阐明这种模型的运行机制及其背后的原因。无需担心,你不需要事先了解GAN的知识,但初次接触的读者可能需要花一些时间来理
- 使用 Milvus 进行向量数据库管理与实践
qahaj
milvus数据库python
技术背景介绍在当今的AI与机器学习应用中,处理和管理大量的嵌入向量是一个常见的需求。Milvus是一个开源向量数据库,专门用于存储、索引和管理深度神经网络以及其他机器学习模型生成的大规模嵌入向量。它的高性能和易用性使其成为处理向量数据的理想选择。核心原理解析Milvus的核心功能体现在其强大的向量索引和搜索能力。它支持多种索引算法,包括IVF、HNSW等,使其能够高效地进行大规模向量的相似性搜索操
- 【IT大学生必会的】 10 种图表线性回归
.Boss.
深度学习开发语言人工智能机器学习算法
这段时间,不少同学提到了一些图表的问题。每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?其实这个根据你自己的需求,自己的想法来就行。今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在
- 搜广推校招面经五十五
Y1nhl
搜广推面经深度学习机器学习python推荐算法搜索算法广告算法人工智能
腾讯搜推面经一、双塔模型有什么缺点双塔模型(Two-TowerModel)是一种常见的推荐系统或检索系统架构,尤其在处理大规模用户-物品交互数据时表现出色。1.1.特征交互受限问题:双塔模型将用户特征和物品特征分别编码为两个独立的向量(用户塔和物品塔),然后在顶层通过简单的点积或余弦相似度计算得分。这种设计限制了用户特征和物品特征之间的细粒度交互。影响:无法捕捉复杂的特征交叉信息,可能导致模型性能
- SQLMesh SCD Type 2 深度解析:时间戳与列级跟踪的实战指南
梦想画家
数据分析工程#python数据工程分析工程sqlmesh
在数据仓库架构中,缓慢变化维度(SlowlyChangingDimensions,SCD)是处理历史数据追踪的核心技术。SQLMesh作为新一代数据编织平台,其支持的SCDType2模型通过valid_from和valid_to双时间戳机制,为开发者提供了灵活的历史状态管理能力。本文将深入解析SQLMeshSCDType2的两种实现模式(基于时间戳与列级变更检测)、关键配置项及删除操作处理逻辑,让
- 元数据驱动的设想
吾爱乐享
python
title:元数据驱动的设想tags:pythoncategories:python文章目录1.背景针对相似结构的表单,为了提高ui自动化编写效率,减少以减少重复工作,设想是否可以设计一个针对neoUI2.0通过元数据驱动的方式适应不同业务对象的测试框架2.设计元数据模型-字段名-字段类型-是否必填-是否只读-默认值-业务逻辑(可选,后期扩展)3.构建自动化测试框架利用现有的RF框架已实现的功能,
- 法律行业——合同审查与AI律师
zhouyaowei1983
人工智能人工智能
一、引言:AI技术重构法律行业新格局随着AI技术从实验室走向规模化应用,法律行业正经历从“经验驱动”向“数据驱动”的范式转变。这一变革的核心驱动力源于法律服务的两大根本矛盾:传统人工服务效率瓶颈与市场对高精度、低成本法律产品的迫切需求。1.法律行业数字化转型的底层逻辑技术革命推手:以DeepSeekR1大模型为代表的开源AI技术,让法律文本解析、案例推理等复杂任务实现平民化应用
- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- 本地部署deepseek-r1:14b 批量调用 Python调用本地deepseek-r1:14b实现对本地数据库的AI管理
朴拙Python交易猿
python数据库开发语言
这篇文章主要为大家详细介绍了Python如何基于DeepSeek模型,调用本地deepseek-r1:14b实现对本地数据库的AI管理场景描述基于DeepSeek模型,实现对本地数据库的AI管理。实现思路1、本地python+flask搭建个WEB,配置数据源。2、通过DeepSeek模型根据用户输入的文字需求,自动生成SQL语句。3、通过SQL执行按钮,实现对数据库的增删改查。模型服务方法1启动
- RFM案例(简要版)
郜太素
数据处理和统计分析NumpypandasRFM案例mysql学习方法sql
一、会员价值度模型1、RFM模型介绍会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标之一。价值度模型一般基于交易行为产生,衡量的是有实体转化价值的行为。常用的价值度模型是RFMRFM模型是根据会员最近一次购买时间R(Recency)购买频率F(Frequency)购买金额M(Monetary)计算得出RFM得分通过这3个维度来评估客户的订单活跃价
- 如何使用百度云Qianfan进行AI应用开发
dgay_hua
百度云人工智能云计算python
技术背景介绍百度云Qianfan是由百度公司提供的云服务,包含了云存储、文件管理、资源共享、以及第三方集成等功能。作为开发者,Qianfan支持多种AI应用开发组件,包括大语言模型(LLMs)、对话模型、嵌入模型和向量存储等。本文将重点介绍如何利用这些组件进行实际的AI应用开发。核心原理解析百度云Qianfan通过其丰富的API接口和云计算能力,为开发者提供了易于集成的AI开发环境。核心组件如Qi
- 免费GIS工具箱:支持多种格式的模型预览及编辑,还能进行协同编辑
GISBox
GISBoxGIS切片分发倾斜摄影OBJFBXOSGB
市面上不少GIS软件价格高昂,功能却不尽人意。但GISBox却不太一样,它的切片、分发功能完全免费,能预览、编辑多种格式模型,还支持协同编辑,性价比远超同类软件,如果你想进一步了解它,不妨看看这篇文章。01打破价格与功能的双重困境在地理信息系统(GIS)领域,大多数软件的高价一直是小型企业、科研团队以及个人开发者的一大阻碍。这些软件不仅采购成本高,后续的维护和升级费用也不低。与此同时,很多软件功能
- OSGB编辑复杂又困难?试试这款免费GIS工具箱,高效实现场景编辑
GISBox
GISBoxvue.jswebglnode.jsedge数据分析科技经验分享
在当今的地理信息科学(GIS)领域,数据的精确处理与直观展示无疑扮演着核心角色。无论是城市规划的精细布局、环境保护的科学决策,还是灾害预警的迅速响应,都离不开准确、实时的地理信息基石。然而,面对庞大的GIS数据,许多软件在处理、编辑和转换上都显得力不从心,尤其是对于倾斜摄影模型、地形和影像的编辑,更是成为了许多用户的棘手难题。1.GISBox简介GISBox作为一款免费的GIS工具箱,支持OSGB
- Ollama 本地部署
FuWen_Hao
ai
文章目录前言一、Ollama是什么?二、使用步骤1.安装OllamaWindows检验是否安装成功2.运行ollama模型库运行模型提问修改配置(可选)如果有个性化需求,需要修改默认配置:参考前言Ollama是一个易于使用的本地大模型运行框架,支持Mac、Windows和WSL2环境。文章介绍了如何在Widows上安装Ollama。一、Ollama是什么?Ollama是一个简明易用的本地大模型运行
- Deepseek-r1:14b+ScraperAPI实现联网本地大模型回答
FuWen_Hao
python人工智能
文章目录前言一、Deekseek本地部署二、SerpAPI1.什么是SerpAPI?2.如何使用SerpAPI进行Web搜索三、实现Deepseek-r1:14b+ScraperAPI实现联网本地大模型回答1.Code前言我需要对本地的Deepseek-r1:14b进行提问,我发现它对于实时的问题,或者不知道的问题,会不回答或者乱回答。基于这点我想通过WebAPI传输更多的信息给到Deekseek
- 【大语言模型_5】xinference部署embedding模型和rerank模型
没枕头我咋睡觉
大语言模型语言模型embedding人工智能
一、安装xinferencepipinstallxinference二、启动xinference./xinference-local--host=0.0.0.0--port=5544三、注册本地模型1、注册embedding模型curl-XPOST"http://localhost:5544/v1/models"\-H"Content-Type:application/json"\-d'{"mod
- 向量检索、检索增强生成(RAG)、大语言模型及相关系统架构——典型面试问题及简要答案
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)语言模型系统架构面试
1.什么是向量检索?它与传统基于关键字的检索相比有什么不同?答案要点:向量检索是将文本、图像、音频等数据映射为向量,在高维向量空间中基于相似度或距离进行搜索。与传统基于关键字的检索(如倒排索引)相比,向量检索更关注“语义”或“特征”,能找出语义上相似但未必包含相同关键词的内容。向量检索非常适合多模态场景(例如“以图搜图”)或自然语言问答(同义词、上下文关联等)。2.什么是检索增强生成(RAG)?核
- 使用LangSmith追踪LLM令牌使用情况的指南
dgay_hua
java服务器前端python
在将应用程序投入生产时,追踪令牌使用情况以计算成本是一个重要的步骤。本文将深入探讨如何从LangChain模型调用中获取这些信息。技术背景介绍在大语言模型(LLM)的应用中,令牌使用计数是估算模型调用成本的基础。LangSmith提供了一种有效的方式来帮助跟踪应用程序中的令牌使用。此外,使用回调机制可以在不同的API调用中进行监控,这对于复杂的应用程序尤其重要。核心原理解析通过在API调用中使用回
- 如何评估一个RAG系统(RAGas评测框架)-下篇
写程序的小火箭
大语言模型人工智能语言模型chatgptlangchaingpt
RAGas是一个用于评测RAG系统的评测框架,它支持与不同大语言模型的集成,并与langchain生态打通,能够很方便的构建评测系统。下面是RAGas的一些链接论文:https://arxiv.org/pdf/2309.15217官方文档:Ragashttps://github.com/explodinggradients/ragas官方文档及github对框架的使用介绍的比较详细,本文不会就该方
- 【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、工具与指标
同学小张
大模型人工智能笔记经验分享gptagiAIGC
大家好,我是同学小张,日常分享AI知识和实战案例欢迎点赞+关注,持续学习,持续干货输出。+v:jasper_8017一起交流,一起进步。微信公众号也可搜【同学小张】本站文章一览:前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。文章目录推荐前置阅读0.R
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 一步到位!7大模型部署框架深度测评:从理论到DeepSeek R1:7B落地实战
人肉推土机
人工智能python
本文在掘金同步发布:文章地址更多优质文章,请关注本人掘金账号:人肉推土机的掘金账号随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。本文深入解析主流模型部署框架(Transformers、ModelScope、vLLM、LMDeploy、Ollama、SGLang、DeepSpeed),结合其技术原理、优缺点及适用场景,并提供DeepSeekR1:7B的详细部署实
- 对MCP工作流的一些个人认知
持续学习的老赵
人工智能
最近在学习MCP系统,虽尚未深入掌握,但已对其工作原理有了初步认识,在此分享下学习收获。MCP是一套能实现客户端、多种服务与大模型协同工作的系统,能处理任务请求并及时反馈。其工作流程如下:一、获取并更新服务使用方法(一)收集整理使用方法MCP正常运行依赖于对各类服务使用方法的了解,这要靠已在系统注册且可识别的功能模块。一旦有新模块注册或旧模块更新,系统会自动检测并获取其使用方法信息。MCP订阅服务
- 从MapRerankDocumentsChain迁移到LangGraph实现文档分析
bBADAS
服务器运维python
在分析长文本的场景中,MapRerankDocumentsChain提供了一种有效的策略。这种策略涉及以下步骤:将文本拆分为较小的文档。为文档集映射一个处理过程,该过程包括生成评分。根据评分对结果进行排名,并返回得分最高的结果。这种情况下的常见过程是使用文档中的上下文进行问答,强制模型生成评分以帮助选择只由相关上下文生成的答案。LangGraph的实现允许在此问题中集成工具调用和其他功能。下面我们
- GEO:在AI时代抢占DeepSeekC位?
白雪讲堂
人工智能
前言:当SEO遇见AGI——一场静默的流量革命在生成式AI日均处理53亿次查询的今天,传统SEO的「关键词-排名-点击」逻辑正在崩塌。DeepSeek、ChatGPT、豆包等大模型用动态生成的答案,悄然截流了68%的搜索需求。更残酷的是:当用户问"某个产品推荐"时,AI可能同时调用37个信源,却不会留下任何可追踪的搜索痕迹。这场革命迫使企业必须从「关键词优化」转向「场景占领」,从「流量争夺」进化到
- 【PTA-数据库】《数据库原理与应用B》第二章 选择题
.Phoenix.
《数据库原理与应用B》第二章数据库
1.关系模型的数据结构非常简单,只包含单一的数据结构——____C____。A.元组B.属性C.关系D.分量2____A____是一组具有相同数据类型的值的集合。A.域B.属性C.分量D.元组3.一个域允许的不同取值个数称为这个域的___D_____。A.分量B.目C.度D.基数4.若D1域的基数为2,D2域的基数为3,D3域的基数为4,则D1、D2、D3的笛卡尔积的基数为___C_____。A.
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本