##RunLoop浅析
参考文章:`https://www.jianshu.com/p/c38b5741919b`
源码:`https://opensource.apple.com/tarballs/CF/`
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m
讲讲 RunLoop,项目中有用到吗?
runloop内部实现逻辑?
runloop和线程的关系?
timer 与 runloop 的关系?
程序中添加每3秒响应一次的NSTimer,当拖动tableview时timer可能无法响应要怎么解决?
runloop 是怎么响应用户操作的, 具体流程是什么样的?
说说runLoop的几种状态
runloop的mode作用是什么?
###一 什么是runloop
1.顾名思义
运行循环
2.应用范畴
定时器(Timer)、PerformSelector
GCD Async Main Queue
事件响应、手势识别、界面刷新
网络请求
AutoreleasePool
程序并不会马上退出,而是保持运行状态
###二 RunLoop的基本作用
1.保持程序的持续运行
2.处理App中的各种事件(比如触摸事件、定时器事件等)
3.节省CPU资源,提高程序性能:该做事时做事,该休息时休息
......
RunLoop在跑圈过程中,当接收到Input sources 或者 Timer sources时就会交给对应的处理方去处理。当没有事件消息传入的时候,RunLoop就休息了。
###三. RunLoop在哪里开启
我们想象一个场景:为什么App程序启动之后能够持续运行在前台呢?
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
从main函数中可以看出来 是因为UIApplicationMain方法的执行,那么UIApplicationMain内部做了些什么事能保持程序不退出呢?这就是RunLoop的功劳了。
进入UIApplicationMain
UIKIT_EXTERN int UIApplicationMain(int argc, char *argv[], NSString * __nullable principalClassName, NSString * __nullable delegateClassName);
我们知道主线程一开起来,就会跑一个和主线程对应的RunLoop,那么RunLoop一定是在程序的入口main函数中开启
在UIApplicationMain函数中,开启了一个和主线程相关的RunLoop,导致UIApplicationMain不会返回,一直在运行中,也就保证了程序的持续运行。
UIApplicationMain的大致实现原理就是:(伪代码)
int retVal = 0;
do {
int message = sleep_and_wait(); //睡眠中等待消息(比如详情点击各种事件)
retVal = proess_message(message);//处理消息,更改返回值,如果为0,代表程序退出,不为0,程序持续运行。
}while(retVal == 0);
###四. RunLoop的源码
// 用DefaultMode启动
void CFRunLoopRun(void) { /* DOES CALLOUT */
int32_t result;
do {
//kCFRunLoopDefaultMode,默认情况下,runLoop是在这个mode下运行的
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
CHECK_FOR_FORK();
} while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result);
}
SInt32 CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
该方法,可以设置runLoop运行在哪个mode下modeName,超时时间seconds,以及是否处理完事件就返回returnAfterSourceHandled。
这两个方法实际调用的是同一个方法CFRunLoopRunSpecific,其返回是一个SInt32类型的值,根据返回值,来决定runLoop的运行状况。
SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return kCFRunLoopRunFinished;
__CFRunLoopLock(rl);
/// 首先根据modeName找到对应mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(rl, modeName, false);
if (NULL == currentMode || __CFRunLoopModeIsEmpty(rl, currentMode, rl->_currentMode)) {
Boolean did = false;
if (currentMode) __CFRunLoopModeUnlock(currentMode);
__CFRunLoopUnlock(rl);
return did ? kCFRunLoopRunHandledSource : kCFRunLoopRunFinished;
}
volatile _per_run_data *previousPerRun = __CFRunLoopPushPerRunData(rl);
CFRunLoopModeRef previousMode = rl->_currentMode;
rl->_currentMode = currentMode;
int32_t result = kCFRunLoopRunFinished;
/// 通知 Observers: RunLoop 即将进入 loop
if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
/// 内部函数,进入loop,具体要做的事情
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
/// 通知 Observers: RunLoop 即将退出
if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
__CFRunLoopModeUnlock(currentMode);
__CFRunLoopPopPerRunData(rl, previousPerRun);
rl->_currentMode = previousMode;
__CFRunLoopUnlock(rl);
return result;
}
核心函数
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
int32_t retVal = 0;
do {
/// 通知 Observers:RunLoop即将触发 Timer 回调。
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
/// 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources)
/// 执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
/// RunLoop 触发 Source0 (非port) 回调
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
/// 处理sources0返回为YES
if (sourceHandledThisLoop) {
/// 执行被加入的block
__CFRunLoopDoBlocks(rl, rlm);
}
/// 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) {
/// 处理消息
goto handle_msg;
}
/// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
__CFRunLoopSetSleeping(rl);
/// 等待被唤醒
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
// user callouts now OK again
__CFRunLoopUnsetSleeping(rl);
/// 通知 Observers: 被唤醒,结束休眠
__CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
handle_msg:
if (被Timer唤醒) {
/// 处理Timers
__CFRunLoopDoTimers(rl, rlm, mach_absolute_time());
} else if (被GCD唤醒) {
/// 处理gcd
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
} else if (被Source1唤醒) {
/// 被Source1唤醒,处理Source1
__CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply)
}
/// 处理block
__CFRunLoopDoBlocks(rl, rlm);
if (sourceHandledThisLoop && stopAfterHandle) {
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
retVal = kCFRunLoopRunFinished;
}
} while (0 == retVal);
return retVal;
}
内部调用才是真正处理事件的函数,通过上面bt打印全部堆栈信息也可以得到验证。
__CFRunLoopDoObservers 内部调用 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__
__CFRunLoopDoBlocks 内部调用 __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__
__CFRunLoopDoSources0 内部调用 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
__CFRunLoopDoTimers 内部调用 __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__
GCD 调用 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
__CFRunLoopDoSource1 内部调用 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__
###五. RunLoop对象
Fundation框架 (基于CFRunLoopRef的封装)
NSRunLoop对象
CoreFoundation
CFRunLoopRef对象
如何获得RunLoop对象
Foundation
[NSRunLoop currentRunLoop]; // 获得当前线程的RunLoop对象
[NSRunLoop mainRunLoop]; // 获得主线程的RunLoop对象
Core Foundation
CFRunLoopGetCurrent(); // 获得当前线程的RunLoop对象
CFRunLoopGetMain(); // 获得主线程的RunLoop对象
###六. RunLoop和线程间的关系
每条线程都有唯一的一个与之对应的RunLoop对象
RunLoop保存在一个全局的Dictionary里,线程作为key,RunLoop作为value
主线程的RunLoop已经自动创建好了,子线程的RunLoop需要主动创建
RunLoop在第一次获取时创建,在线程结束时销毁
通过源码查看上述对应
// 拿到当前Runloop 调用_CFRunLoopGet0
CFRunLoopRef CFRunLoopGetCurrent(void) {
CHECK_FOR_FORK();
CFRunLoopRef rl = (CFRunLoopRef)_CFGetTSD(__CFTSDKeyRunLoop);
if (rl) return rl;
return _CFRunLoopGet0(pthread_self());
}
CF_EXPORT CFRunLoopRef _CFRunLoopGet0(pthread_t t) {
if (pthread_equal(t, kNilPthreadT)) {
t = pthread_main_thread_np();
}
__CFSpinLock(&loopsLock);
if (!__CFRunLoops) {
__CFSpinUnlock(&loopsLock);
CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
/ 根据传入的主线程获取主线程对应的RunLoop
CFRunLoopRef mainLoop = __CFRunLoopCreate(pthread_main_thread_np());
// 保存主线程 将主线程-key和RunLoop-Value保存到字典中
CFDictionarySetValue(dict, pthreadPointer(pthread_main_thread_np()), mainLoop);
if (!OSAtomicCompareAndSwapPtrBarrier(NULL, dict, (void * volatile *)&__CFRunLoops)) {
CFRelease(dict);
}
CFRelease(mainLoop);
__CFSpinLock(&loopsLock);
}
// 从字典里面拿,将线程作为key从字典里获取一个loop
CFRunLoopRef loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
__CFSpinUnlock(&loopsLock);
// 如果loop为空,则创建一个新的loop,所以runloop会在第一次获取的时候创建
if (!loop) {
CFRunLoopRef newLoop = __CFRunLoopCreate(t);
__CFSpinLock(&loopsLock);
loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
// 创建好之后,以线程为key runloop为value,一对一存储在字典中,下次获取的时候,则直接返回字典内的runloop
if (!loop) {
CFDictionarySetValue(__CFRunLoops, pthreadPointer(t), newLoop);
loop = newLoop;
}
// don't release run loops inside the loopsLock, because CFRunLoopDeallocate may end up taking it
__CFSpinUnlock(&loopsLock);
CFRelease(newLoop);
}
if (pthread_equal(t, pthread_self())) {
_CFSetTSD(__CFTSDKeyRunLoop, (void *)loop, NULL);
if (0 == _CFGetTSD(__CFTSDKeyRunLoopCntr)) {
_CFSetTSD(__CFTSDKeyRunLoopCntr, (void *)(PTHREAD_DESTRUCTOR_ITERATIONS-1), (void (*)(void *))__CFFinalizeRunLoop);
}
}
return loop;
}
从上面的代码可以看出,线程和 RunLoop 之间是一一对应的,其关系是保存在一个 Dictionary 里。所以我们创建子线程RunLoop时,只需在子线程中获取当前线程的RunLoop对象即可[NSRunLoop currentRunLoop];如果不获取,那子线程就不会创建与之相关联的RunLoop,并且只能在一个线程的内部获取其 RunLoop
[NSRunLoop currentRunLoop];方法调用时,会先看一下字典里有没有存子线程相对用的RunLoop,如果有则直接返回RunLoop,如果没有则会创建一个,并将与之对应的子线程存入字典中。当线程结束时,RunLoop会被销毁。
###七. RunLoop结构体
struct __CFRunLoop {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* locked for accessing mode list */
__CFPort _wakeUpPort; // used for CFRunLoopWakeUp
Boolean _unused;
volatile _per_run_data *_perRunData; // reset for runs of the run loop
pthread_t _pthread;
uint32_t _winthread;
CFMutableSetRef _commonModes;
CFMutableSetRef _commonModeItems;
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
struct _block_item *_blocks_head;
struct _block_item *_blocks_tail;
CFAbsoluteTime _runTime;
CFAbsoluteTime _sleepTime;
CFTypeRef _counterpart;
};
除一些记录性属性外,主要来看一下以下两个成员变量
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
CFRunLoopModeRef其实是指向__CFRunLoopMode结构体的指针,__CFRunLoopMode结构体源码如下
typedef struct __CFRunLoopMode *CFRunLoopModeRef; //RunLoop的运行模式
struct __CFRunLoopMode {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* must have the run loop locked before locking this */
CFStringRef _name;
Boolean _stopped;
char _padding[3];
CFMutableSetRef _sources0;
CFMutableSetRef _sources1;
CFMutableArrayRef _observers;
CFMutableArrayRef _timers;
CFMutableDictionaryRef _portToV1SourceMap;
__CFPortSet _portSet;
CFIndex _observerMask;
#if USE_DISPATCH_SOURCE_FOR_TIMERS
dispatch_source_t _timerSource;
dispatch_queue_t _queue;
Boolean _timerFired; // set to true by the source when a timer has fired
Boolean _dispatchTimerArmed;
#endif
#if USE_MK_TIMER_TOO
mach_port_t _timerPort;
Boolean _mkTimerArmed;
#endif
#if DEPLOYMENT_TARGET_WINDOWS
DWORD _msgQMask;
void (*_msgPump)(void);
#endif
uint64_t _timerSoftDeadline; /* TSR */
uint64_t _timerHardDeadline; /* TSR */
};
主要查看以下成员变量
CFMutableSetRef _sources0;
CFMutableSetRef _sources1;
CFMutableArrayRef _observers;
CFMutableArrayRef _timers;
CFRunLoopModeRef代表RunLoop的运行模式,一个RunLoop包含若干个Mode,每个Mode又包含若干个Source0/Source1/Timer/Observer,而RunLoop启动时只能选择其中一个Mode作为currentMode
Source1/Source0/Timers/Observer分别代表什么
1. Source1 : 基于Port的线程间通信
2. Source0 : 触摸事件,PerformSelectors
###八. 详解RunLoop相关类及作用
CFRunLoopRef - 获得当前RunLoop和主RunLoop
CFRunLoopModeRef - RunLoop 运行模式,只能选择一种,在不同模式中做不同的操作
CFRunLoopSourceRef - 事件源,输入源
CFRunLoopTimerRef - 定时器时间
CFRunLoopObserverRef - 观察者
1. CFRunLoopModeRef
CFRunLoopModeRef代表RunLoop的运行模式
一个 RunLoop 包含若干个 Mode,每个Mode又包含若干个Source、Timer、Observer
每次RunLoop启动时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode
如果需要切换Mode,只能退出RunLoop,再重新指定一个Mode进入,这样做主要是为了分隔开不同组的Source、Timer、Observer,让其互不影响。如果Mode里没有任何Source0/Source1/Timer/Observer,RunLoop会立马退出
注意:一种Mode中可以有多个Source(事件源,输入源,基于端口事件源例键盘触摸等)
Observer(观察者,观察当前RunLoop运行状态)和Timer(定时器事件源)。但是必须至少有一个Source或者Timer,因为如果Mode为空,RunLoop运行到空模式不会进行空转,就会立刻退出。
###九. 系统默认注册的5个Mode:
####1.RunLoop 有五种运行模式,其中常见的有1.2两种
1. kCFRunLoopDefaultMode:App的默认Mode,通常主线程是在这个Mode下运行
2. UITrackingRunLoopMode:界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响
3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用,会切换到kCFRunLoopDefaultMode
4. GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到
5. kCFRunLoopCommonModes: 这是一个占位用的Mode,作为标记kCFRunLoopDefaultMode和UITrackingRunLoopMode用,并不是一种真正的Mode
####2.Mode间的切换
我们平时在开发中一定遇到过,当我们使用NSTimer每一段时间执行一些事情时滑动UIScrollView,NSTimer就会暂停,当我们停止滑动以后,NSTimer又会重新恢复的情况,我们通过一段代码来看一下
-(void)touchesBegan:(NSSet
{
// [NSTimer scheduledTimerWithTimeInterval:2.0 target:self selector:@selector(show) userInfo:nil repeats:YES];
NSTimer *timer = [NSTimer timerWithTimeInterval:2.0 target:self selector:@selector(show) userInfo:nil repeats:YES];
// 加入到RunLoop中才可以运行
// 1. 把定时器添加到RunLoop中,并且选择默认运行模式NSDefaultRunLoopMode = kCFRunLoopDefaultMode
// [[NSRunLoop mainRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode];
// 当textFiled滑动的时候,timer失效,停止滑动时,timer恢复
// 原因:当textFiled滑动的时候,RunLoop的Mode会自动切换成UITrackingRunLoopMode模式,因此timer失效,当停止滑动,RunLoop又会切换回NSDefaultRunLoopMode模式,因此timer又会重新启动了
// 2. 当我们将timer添加到UITrackingRunLoopMode模式中,此时只有我们在滑动textField时timer才会运行
// [[NSRunLoop mainRunLoop] addTimer:timer forMode:UITrackingRunLoopMode];
// 3. 那个如何让timer在两个模式下都可以运行呢?
// 3.1 在两个模式下都添加timer 是可以的,但是timer添加了两次,并不是同一个timer
// 3.2 使用站位的运行模式 NSRunLoopCommonModes标记,凡是被打上NSRunLoopCommonModes标记的都可以运行,下面两种模式被打上标签
//0 :
//2 :
// 因此也就是说如果我们使用NSRunLoopCommonModes,timer可以在UITrackingRunLoopMode,kCFRunLoopDefaultMode两种模式下运行
[[NSRunLoop mainRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];
NSLog(@"%@",[NSRunLoop mainRunLoop]);
}
-(void)show
{
NSLog(@"-------");
}
由上述代码可以看出,NSTimer不管用是因为Mode的切换,因为如果我们在主线程使用定时器,此时RunLoop的Mode为kCFRunLoopDefaultMode,即定时器属于kCFRunLoopDefaultMode,那么此时我们滑动ScrollView时,RunLoop的Mode会切换到UITrackingRunLoopMode,因此在主线程的定时器就不在管用了,调用的方法也就不再执行了,当我们停止滑动时,RunLoop的Mode切换回kCFRunLoopDefaultMode,所以NSTimer就又管用了
使用GCD也可是创建计时器,而且更为精确我们来看一下代码
####3. CFRunLoopSourceRef事件源(输入源)
Source分为两种
Source0:非基于Port的 用于用户主动触发的事件(点击button 或点击屏幕)
Source1:基于Port的 通过内核和其他线程相互发送消息(与内核相关)
####4. CFRunLoopObserverRef
CFRunLoopObserverRef是观察者,能够监听RunLoop的状态改变
-(void)touchesBegan:(NSSet
{
//创建监听者
/*
第一个参数 CFAllocatorRef allocator:分配存储空间 CFAllocatorGetDefault()默认分配
第二个参数 CFOptionFlags activities:要监听的状态 kCFRunLoopAllActivities 监听所有状态
第三个参数 Boolean repeats:YES:持续监听 NO:不持续
第四个参数 CFIndex order:优先级,一般填0即可
第五个参数 :回调 两个参数observer:监听者 activity:监听的事件
*/
/*
所有事件
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), // 即将进入RunLoop
kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理Timer
kCFRunLoopBeforeSources = (1UL << 2), // 即将处理Source
kCFRunLoopBeforeWaiting = (1UL << 5), //即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6),// 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7),// 即将退出RunLoop
kCFRunLoopAllActivities = 0x0FFFFFFFU
};
*/
CFRunLoopObserverRef observer = CFRunLoopObserverCreateWithHandler(CFAllocatorGetDefault(), kCFRunLoopAllActivities, YES, 0, ^(CFRunLoopObserverRef observer, CFRunLoopActivity activity) {
switch (activity) {
case kCFRunLoopEntry:
NSLog(@"RunLoop进入");
break;
case kCFRunLoopBeforeTimers:
NSLog(@"RunLoop要处理Timers了");
break;
case kCFRunLoopBeforeSources:
NSLog(@"RunLoop要处理Sources了");
break;
case kCFRunLoopBeforeWaiting:
NSLog(@"RunLoop要休息了");
break;
case kCFRunLoopAfterWaiting:
NSLog(@"RunLoop醒来了");
break;
case kCFRunLoopExit:
NSLog(@"RunLoop退出了");
break;
default:
break;
}
});
// 给RunLoop添加监听者
/*
第一个参数 CFRunLoopRef rl:要监听哪个RunLoop,这里监听的是主线程的RunLoop
第二个参数 CFRunLoopObserverRef observer 监听者
第三个参数 CFStringRef mode 要监听RunLoop在哪种运行模式下的状态
*/
CFRunLoopAddObserver(CFRunLoopGetCurrent(), observer, kCFRunLoopDefaultMode);
/*
CF的内存管理(Core Foundation)
凡是带有Create、Copy、Retain等字眼的函数,创建出来的对象,都需要在最后做一次release
GCD本来在iOS6.0之前也是需要我们释放的,6.0之后GCD已经纳入到了ARC中,所以我们不需要管了
*/
CFRelease(observer);
}
Observer确实用来监听RunLoop的状态,包括唤醒,休息,以及处理各种事件
###十. RunLoop处理逻辑流程图
网址 `https://www.jianshu.com/p/de752066d0ad`
Source0
触摸事件处理
performSelector:onThread:
Source1
基于Port的线程间通信
系统事件捕捉
Timers
NSTimer
performSelector:withObject:afterDelay:
Observers
用于监听RunLoop的状态
UI刷新(BeforeWaiting)
Autorelease pool(BeforeWaiting)
01、通知Observers:进入Loop
02、通知Observers:即将处理Timers
03、通知Observers:即将处理Sources
04、处理Blocks
05、处理Source0(可能会再次处理Blocks)
06、如果存在Source1,就跳转到第8步
07、通知Observers:开始休眠(等待消息唤醒)
08、通知Observers:结束休眠(被某个消息唤醒)
01> 处理Timer
02> 处理GCD Async To Main Queue
03> 处理Source1
09、处理Blocks
10、根据前面的执行结果,决定如何操作
01> 回到第02步
02> 退出Loop
11、通知Observers:退出Loop
###十一. RunLoop应用
线程保活网址 `https://juejin.im/post/5c8cba495188257e16048237`
###App启动优化
https://juejin.im/post/5cff0ada6fb9a07edc0b4c3c