sdn第五次作业

1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:

描述官方教程实现了一个什么样的交换机功能?

实现了一个将接收到的数据包发送到所有端口的交换机功能

控制器设定交换机支持什么版本的OpenFlow?

OpenFlow 1.0

控制器设定了交换机如何处理数据包?

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions)
        dp.send_msg(out)

在L2Switch类中添加了“packet_in_handler”。当Ryu接收到消息中的OpenFlow的packet_in数据包时调用此函数。“set-ev-cls”这个decorator告诉Ryu何时应该调用修饰函数。
decorator的第一个参数指示应该调用此函数的事件类型。每次Ryu在消息中收到一个packet_时,都会调用此函数。
第二个参数指示开关的状态。您可能希望在Ryu和交换机之间的协商完成之前忽略消息中的packet_。使用“MAIN_DISPATCHER”作为第二个参数意味着仅在协商完成后才调用此函数。
“packet_in_handler”函数的前半部分。
msg是表示数据结构中的数据包的对象。
dp是表示数据路径(开关)的对象。
proto和proto廑解析器是表示Ryu和switch协商的OpenFlow协议的对象。
下半部分
OFPActionOutput类与数据包输出消息一起使用,以指定要从中发送数据包的交换机端口。此应用程序使用OFPP_FLOOD标志来指示应在所有端口上发送数据包。
OFPPacketOut类用于生成包输出消息。
如果使用OpenFlow消息类对象调用Datapath类的send_msg方法,Ryu将生成在线数据格式并将其发送到交换机。

2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

完整代码

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch(app_manager.RyuApp):
    # TODO define OpenFlow 1.0 version for the switch
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    def add_flow(self, datapath, in_port, dst, src, actions):
        ofproto = datapath.ofproto

        match = datapath.ofproto_parser.OFPMatch(
            in_port=in_port,
            dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))

        mod = datapath.ofproto_parser.OFPFlowMod(
            datapath=datapath, match=match, cookie=0,
            command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
            priority=ofproto.OFP_DEFAULT_PRIORITY,
            flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)

        # TODO send modified message out
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocol(ethernet.ethernet)

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        if eth.ethertype == ether_types.ETH_TYPE_IPV6:
            # ignore ipv6 packet
            return

        dst = eth.dst
        src = eth.src
        dpid = datapath.id
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = msg.in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        # TODO define the action for output
        actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ",
                             dpid, src, dst, msg.in_port, out_port)
            self.add_flow(datapath, msg.in_port, dst, src, actions)

        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        # TODO define the OpenFlow Packet Out
        out = datapath.ofproto_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=msg.in_port,
                                                   actions=actions, data=data)
        datapath.send_msg(out)

    print("PACKET_OUT...")

3.在mininet创建一个最简拓扑,并连接RYU控制器

sdn第五次作业_第1张图片
python拓扑代码

from mininet.topo import Topo
class MyTopo(Topo):

    def __init__(self):

        # initilaize topology
        Topo.__init__(self)

        # add hosts and switches
        h1 = self.addHost('h1')
        h2 = self.addHost('h2')
        s1 = self.addSwitch('s1')
        # add links
        self.addLink(h1, s1, 1, 1)
    self.addLink(h2, s1, 1, 2)
topos = {'mytopo': (lambda: MyTopo())}
sudo mn --custom ./easy.py --topo mytopo --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

sdn第五次作业_第2张图片

4.验证自学习交换机的功能,提交分析过程和验证结果

运行RYU控制器,指导交换机执行转发
sdn第五次作业_第3张图片
输入h1 ping h2,测试主机之间的连通性
sdn第五次作业_第4张图片
在mininet中查看s1的流表
sdn第五次作业_第5张图片

你可能感兴趣的:(sdn第五次作业)