本文对建立TCP/IP连接的服务器做了一些汇总。一个TCP/IP服务器使用epoll实现IO复用,epoll+线程池实现高并发,解决C10K问题。再者在TCP/IP连接的基础上实现了HTTP协议。
服务器的TCP/IP连接
上图相当清楚的表明了如何建立TCP/IP连接,可以将服务器的TCP/IP理解为套路,晓得ipv4/ipv6的区别,设置ip和端口就能满足基本需要。若想深入了解TCP/IP协议,建议阅读<
C10K
大家都知道互联网的基础就是网络通信,早期的互联网可以说是一个小群体的集合。互联网还不够普及,用户也不多。一台服务器同时在线100个用户估计在当时已经算是大型应用了。所以并不存在什么C10K的难题。互联网的爆发期应该是在www网站,浏览器,雅虎出现后。最早的互联网称之为Web1.0,互联网大部分的使用场景是下载一个Html页面,用户在浏览器中查看网页上的信息。这个时期也不存在C10K问题。
Web2.0时代到来后就不同了,一方面是普及率大大提高了,用户群体几何倍增长。另一方面是互联网不再是单纯的浏览万维网网页,逐渐开始进行交互,而且应用程序的逻辑也变的更复杂,从简单的表单提交,到即时通信和在线实时互动。C10K的问题才体现出来了。每一个用户都必须与服务器保持TCP连接才能进行实时的数据交互。Facebook这样的网站同一时间的并发TCP连接可能会过亿。
这时候问题就来了,最初的服务器都是基于进程/线程模型的,新到来一个TCP连接,就需要分配1个进程(或者线程)。而进程又是操作系统最昂贵的资源,一台机器无法创建很多进程。如果是C10K就要创建1万个进程,那么操作系统是无法承受的。如果是采用分布式系统,维持1亿用户在线需要10万台服务器,成本巨大,也只有Facebook,Google,雅虎才有财力购买如此多的服务器。这就是C10K问题的本质。
如何解决C10K问题?
一个进程处理一个连接很快遇到瓶颈,那一个线程一个连接呢?又治标不治本,所占资源仍相当可观。很快思路就转到了一个进程/线程处理多个连接,如何实现?IO多路复用。
服务器的TCP/IP连接IO复用的实现
select、poll、epoll通过异步监听连接的方式来实现IO复用,select和poll缺点很明显:select最大不能超过1024,poll没有限制,但每次收到数据需要遍历每一个连接查看哪个连接有数据请求。epoll采用事件驱动,为异步非阻塞,使用共享内存而效率最高,成为首选。
epoll是写在linux源码里的,linux提供接口函数,我们只要会调用就可以了。感兴趣的可以去看看epoll的linux源码实现。
首先实现TCP/IP连接,并设定非阻塞。然后建立epoll集合,设置监听的事件类型和模式,将服务器fd加入epoll集合来监听,当有事件产生,epoll监听到并迅速将发生事件的fd放置到events数组里,此时若fd等于客户端fd,代表有新的客户端连接,accept后将新产生的客户端fd加入epoll集合监听;如果fd不等于客户端fd,代表是客户端fd有读写要求或者fd失去连接,使用handles()函数处理读写要求,如果handles函数的返回值<0,代表该连接已关闭,将该客户端fd从监听的epoll集合里清除。当连接数超过epoll集合的最大数目时,将主动关闭连接。
#include
#include /* basic system data types */
#include /* basic socket definitions */
#include /* sockaddr_in{} and other Internet defns */
#include /* inet(3) functions */
#include /* epoll function */
#include /* nonblocking */
#include /*setrlimit */
#include
#include
#include
#include
#define MAXEPOLLSIZE 10000
#define MAXLINE 10240
int handle(int connfd);
/*(1)调用open获得描述符,并指定O_NONBLOCK标志
(2)对已经打开的文件描述符,调用fcntl,打开O_NONBLOCK文件状态标志。
flags = fcntl( s, F_GETFL, 0 ) )
fcntl( s, F_SETFL, flags | O_NONBLOCK ) */
int setnonblocking(int sockfd)
{
if (fcntl(sockfd, F_SETFL, fcntl(sockfd, F_GETFD, 0)|O_NONBLOCK) == -1) {
return -1;
}
return 0;
}
int main(int argc, char **argv)
{
int servPort = 6888;
int listenq = 1024;
int listenfd, connfd, kdpfd, nfds, n, nread, curfds,acceptCount = 0;
struct sockaddr_in servaddr, cliaddr;
socklen_t socklen = sizeof(struct sockaddr_in);
struct epoll_event ev;
struct epoll_event events[MAXEPOLLSIZE];
struct rlimit rt;
char buf[MAXLINE];
/* 设置每个进程允许打开的最大文件数 */
rt.rlim_max = rt.rlim_cur = MAXEPOLLSIZE;
/*设置资源的软硬限制 RLMIT_NOFILE 指定比进程可打开的最大文件描述词大一的值,超出此值,将会产生EMFILE错误*/
if (setrlimit(RLIMIT_NOFILE, &rt) == -1)
{
perror("setrlimit error");
return -1;
}
/*字符串部分置零*/
bzero(&servaddr, sizeof(servaddr));
/*ipv4*/
servaddr.sin_family = AF_INET;
/*inaddr_any*/
servaddr.sin_addr.s_addr = htonl (INADDR_ANY);
/*servport 6888*/
servaddr.sin_port = htons (servPort);
listenfd = socket(AF_INET, SOCK_STREAM, 0);
if (listenfd == -1) {
perror("can't create socket file");
return -1;
}
int opt = 1;
/*设置调用close(socket)后,仍可继续重用该socket。调用close(socket)一般不会立即关闭socket,而经历TIME_WAIT的过程。
BOOL bReuseaddr = TRUE;
setsockopt( s, SOL_SOCKET, SO_REUSEADDR, ( const char* )&bReuseaddr, sizeof( BOOL ) );*/
setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
/*设置sockfd非阻塞*/
if (setnonblocking(listenfd) < 0) {
perror("setnonblock error");
}
/*绑定*/
if (bind(listenfd, (struct sockaddr *) &servaddr, sizeof(struct sockaddr)) == -1)
{
perror("bind error");
return -1;
}
/*监听*/
if (listen(listenfd, listenq) == -1)
{
perror("listen error");
return -1;
}
/* 创建 epoll 句柄,把监听 socket 加入到 epoll 集合里 */
kdpfd = epoll_create(MAXEPOLLSIZE);
/*设置事件类型 EPPLLIN和EPOLLET2种,EPOLLIN 连接到达;有数据来临;
EPOLLOUT 有数据要写*/
ev.events = EPOLLIN | EPOLLET;
/*监听socket加入epoll集合里*/
ev.data.fd = listenfd;
/*interface面向对象编程语言中接口操作的关键字,功能是把所需成员组合起来,用来装封一定功能的集合。它好比一个模板,在其中定义了对象必须实现的成员,通过类或结构来实现它。
epoll_ctl - control interface for an epoll descriptor控制epoll描述符的集合
EPOLL_CTL_ADD
Register the target file descriptor fd on the epoll instance
referred to by the file descriptor epfd and associate the event
event with the internal file linked to fd.
*/
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, listenfd, &ev) < 0)
{
fprintf(stderr, "epoll set insertion error: fd=%d\n", listenfd);
return -1;
}
curfds = 1;
printf("epollserver startup,port %d, max connection is %d, backlog is %d listenfd=%d\n", servPort, MAXEPOLLSIZE, listenq,listenfd);
for (;;) {
/* 等待有事件发生 */
/* epoll_wait, epoll_pwait - wait for an I/O event on an epoll file descriptor*/
/*When successful, epoll_wait() returns the number of file descriptors
ready for the requested I/O, or zero if no file descriptor became ready
during the requested timeout milliseconds. When an error occurs,
epoll_wait() returns -1 and errno is set appropriately.*/
/*-1 timeout The timeout argument specifies the number of milliseconds that
epoll_wait() will block. 为-1表示一直阻塞下去直至有I/O事件或信号 */
/*Note that the timeout interval will be rounded up to the system clock
granularity, and kernel scheduling delays mean that the blocking inter‐
val may overrun by a small amount.timeout 依系统时钟间隔取整*/
/*curfds表示epoll集合所能遇到的最大事件数*/
nfds = epoll_wait(kdpfd, events, curfds, -1);
if (nfds == -1)
{
perror("epoll_wait");
continue;
}
if(nfds==0)
{
printf("songshiqisongshiqi\n");
}
/* 处理所有事件 */
printf("nfds=%d\n",nfds);
for (n = 0; n < nfds; ++n)
{
/*这步是在判断是不是listenfd连接事件啊*/
printf("nfds=%d events.data.fd=%d\n",nfds,events[n].data.fd);
if (events[n].data.fd == listenfd)
{
connfd = accept(listenfd, (struct sockaddr *)&cliaddr,&socklen);
if (connfd < 0)
{
perror("accept error");
continue;
}
sprintf(buf, "accept form %s:%d listenfd=%d\n", inet_ntoa(cliaddr.sin_addr), cliaddr.sin_port,listenfd);
printf("%d:%s", ++acceptCount, buf);
/*这里疑似有误 应为nfds nfds为需处理的i/o数,超过最大值 关闭多余*/
/*若是nfds>max 那不是循环都在关?应该设置temp=curfds,关一次temp--,直到temp<=max才不关*/
/*我理解有误 下文代码加入epoll集合后才算正式可处理,curfds>max,不加入epoll集合,直接关闭*/
if (curfds >= MAXEPOLLSIZE) {
fprintf(stderr, "too many connection, more than %d\n", MAXEPOLLSIZE);
close(connfd);
continue;
}
if (setnonblocking(connfd) < 0) {
perror("setnonblocking error");
}
/*设置事件类型 EPOLLIN 连接到达;有数据来临;EPOLLET 边缘触发模式 */
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = connfd;
if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, connfd, &ev) < 0)
{
fprintf(stderr, "add socket '%d' to epoll failed: %s\n", connfd, strerror(errno));
return -1;
}
curfds++;
continue;
}
// 处理客户端请求
/*handle函数判断连接 若连接 则客户端所发内容原路返回发送 未连接则返回 */
if (handle(events[n].data.fd) < 0) {
/*从epoll集合移除*/
epoll_ctl(kdpfd, EPOLL_CTL_DEL, events[n].data.fd,&ev);
curfds--;
}
}
}
close(listenfd);
return 0;
}
/*可加入http */
int handle(int connfd) {
int nread;
char buf[MAXLINE];
nread = read(connfd, buf, MAXLINE);//读取客户端socket流
if (nread == 0) {
printf("client close the connection\n");
close(connfd);/*断了之后有事件,handle<0而移除出集合*/
return -1;
}
if (nread < 0) {
perror("read error");
close(connfd);
return -1;
}
write(connfd, buf, nread);//响应客户端
return 0;
}
线程池
线程池与epoll的结合使用,只能说是锦上添花,epoll已基本解决了C10K问题,只是面临高并发时,线程池与epoll结合使用,可更好的解决高并发。
传统多线程方案中我们采用的服务器模型则是一旦接受到请求之后,即创建一个新的线程,由该线程执行任务。任务执行完毕后,线程退出,这就是是“即时创建,即时销毁”的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器将处于不停的创建线程,销毁线程的状态。
我们将传统方案中的线程执行过程分为三个过程:T1、T2、T3。
- T1:线程创建时间
- T2:线程执行时间,包括线程的同步等时间
- T3:线程销毁时间
那么我们可以看出,线程本身的开销所占的比例为(T1+T3) / (T1+T2+T3)。如果线程执行的时间很短的话,这比开销可能占到20%-50%左右。如果任务执行时间很频繁的话,这笔开销将是不可忽略的。
除此之外,线程池能够减少创建的线程个数。通常线程池所允许的并发线程是有上界的,如果同时需要并发的线程数超过上界,那么一部分线程将会等待。而传统方案中,如果同时请求数目为2000,那么最坏情况下,系统可能需要产生2000个线程。尽管这不是一个很大的数目,但是也有部分机器可能达不到这种要求。 因此线程池的出现正是着眼于减少线程池本身带来的开销。线程池采用预创建的技术,在应用程序启动之后,将立即创建一定数量的线程(N1),放入空闲队列中。这些线程都是处于阻塞(Suspended)状态,不消耗CPU,但占用较小的内存空间。当任务到来后,缓冲池选择一个空闲线程,把任务传入此线程中运行。当N1个线程都在处理任务后,缓冲池自动创建一定数量的新线程,用于处理更多的任务。在任务执行完毕后线程也不退出,而是继续保持在池中等待下一次的任务。当系统比较空闲时,大部分线程都一直处于暂停状态,线程池自动销毁一部分线程,回收系统资源。 基于这种预创建技术,线程池将线程创建和销毁本身所带来的开销分摊到了各个具体的任务上,执行次数越多,每个任务所分担到的线程本身开销则越小,不过我们另外可能需要考虑进去线程之间同步所带来的开销。
线程池用于epoll事件产生后的处理阶段。在监听的epoll集合里有事件产生后,结合线程池的特性,针对客户端fd产生的读写请求使用线程池比较合适。也就是说,使用线程池对handles函数进行改写(这周末改)。
#include
#include
#include
#include
#include
#include
/*
*线程池里所有运行和等待的任务都是一个CThread_worker
*由于所有任务都在链表里,所以是一个链表结构
*/
typedef struct worker
{
/*回调函数,任务运行时会调用此函数,注意也可声明成其它形式*/
void *(*process) (void *arg);
void *arg;/*回调函数的参数*/
struct worker *next;
} CThread_worker;
/*线程池结构*/
typedef struct
{
pthread_mutex_t queue_lock;
pthread_cond_t queue_ready;
/*链表结构,线程池中所有等待任务*/
CThread_worker *queue_head;
/*是否销毁线程池*/
int shutdown;
pthread_t *threadid;
/*线程池中允许的活动线程数目*/
int max_thread_num;
/*当前等待队列的任务数目*/
int cur_queue_size;
} CThread_pool;
int pool_add_worker (void *(*process) (void *arg), void *arg);
void *thread_routine (void *arg);
//share resource
static CThread_pool *pool = NULL;
void
pool_init (int max_thread_num)
{
pool = (CThread_pool *) malloc (sizeof (CThread_pool));
pthread_mutex_init (&(pool->queue_lock), NULL);
pthread_cond_init (&(pool->queue_ready), NULL);
pool->queue_head = NULL;
pool->max_thread_num = max_thread_num;
pool->cur_queue_size = 0;
pool->shutdown = 0;
pool->threadid = (pthread_t *) malloc (max_thread_num * sizeof (pthread_t));
int i = 0;
for (i = 0; i < max_thread_num; i++)
{
pthread_create (&(pool->threadid[i]), NULL, thread_routine,NULL);
}
}
/*向线程池中加入任务*/
int pool_add_worker (void *(*process) (void *arg), void *arg)
{
/*构造一个新任务*/
CThread_worker *newworker = (CThread_worker *) malloc (sizeof (CThread_worker));
newworker->process = process;
newworker->arg = arg;
newworker->next = NULL;/*别忘置空*/
pthread_mutex_lock (&(pool->queue_lock));
/*将任务加入到等待队列中*/
CThread_worker *member = pool->queue_head;
if (member != NULL)
{
while (member->next != NULL)
member = member->next;
member->next = newworker;
}
else
{
pool->queue_head = newworker;
}
assert (pool->queue_head != NULL);
pool->cur_queue_size++;
pthread_mutex_unlock (&(pool->queue_lock));
/*好了,等待队列中有任务了,唤醒一个等待线程;
注意如果所有线程都在忙碌,这句没有任何作用*/
pthread_cond_signal (&(pool->queue_ready));
return 0;
}
/*销毁线程池,等待队列中的任务不会再被执行,但是正在运行的线程会一直
把任务运行完后再退出*/
int pool_destroy ()
{
if (pool->shutdown)
return -1;/*防止两次调用*/
pool->shutdown = 1;
/*唤醒所有等待线程,线程池要销毁了*/
pthread_cond_broadcast (&(pool->queue_ready));
/*阻塞等待线程退出,否则就成僵尸了*/
int i;
for (i = 0; i < pool->max_thread_num; i++)
pthread_join (pool->threadid[i], NULL);
free (pool->threadid);
/*销毁等待队列*/
CThread_worker *head = NULL;
while (pool->queue_head != NULL)
{
head = pool->queue_head;
pool->queue_head = pool->queue_head->next;
free (head);
}
/*条件变量和互斥量也别忘了销毁*/
pthread_mutex_destroy(&(pool->queue_lock));
pthread_cond_destroy(&(pool->queue_ready));
free (pool);
/*销毁后指针置空是个好习惯*/
pool=NULL;
return 0;
}
void * thread_routine (void *arg)
{
printf ("starting thread 0x%x\n", pthread_self ());
while (1)
{
pthread_mutex_lock (&(pool->queue_lock));
/*如果等待队列为0并且不销毁线程池,则处于阻塞状态; 注意
pthread_cond_wait是一个原子操作,等待前会解锁,唤醒后会加锁*/
while (pool->cur_queue_size == 0 && !pool->shutdown)
{
printf ("thread 0x%x is waiting\n", pthread_self ());
pthread_cond_wait (&(pool->queue_ready), &(pool->queue_lock));
}
/*线程池要销毁了*/
if (pool->shutdown)
{
/*遇到break,continue,return等跳转语句,千万不要忘记先解锁*/
pthread_mutex_unlock (&(pool->queue_lock));
printf ("thread 0x%x will exit\n", pthread_self ());
pthread_exit (NULL);
}
printf ("thread 0x%x is starting to work\n", pthread_self ());
/*assert是调试的好帮手*/
assert (pool->cur_queue_size != 0);
assert (pool->queue_head != NULL);
/*等待队列长度减去1,并取出链表中的头元素*/
pool->cur_queue_size--;
CThread_worker *worker = pool->queue_head;
pool->queue_head = worker->next;
pthread_mutex_unlock (&(pool->queue_lock));
/*调用回调函数,执行任务*/
(*(worker->process)) (worker->arg);
free (worker);
worker = NULL;
}
/*这一句应该是不可达的*/
pthread_exit (NULL);
}
// 下面是测试代码
void * myprocess (void *arg)
{
printf ("threadid is 0x%x, working on task %d\n", pthread_self (),*(int *) arg);
sleep (1);/*休息一秒,延长任务的执行时间*/
return NULL;
}
int
main (int argc, char **argv)
{
pool_init (3);/*线程池中最多三个活动线程*/
/*连续向池中投入10个任务*/
int *workingnum = (int *) malloc (sizeof (int) * 10);
int i;
for (i = 0; i < 10; i++)
{
workingnum[i] = i;
pool_add_worker (myprocess, &workingnum[i]);
}
/*等待所有任务完成*/
sleep (5);
/*销毁线程池*/
pool_destroy ();
free (workingnum);
return 0;
}
HTTP
HTTP协议的实现基于TCP/IP连接,实现高并发(epoll+线程池)的TCP/IP连接与实现http没有太大关系,层次和纬度不同。
这是http协议的简单实现,只实现了get请求和post请求。
服务器采用fork出的双进程。父进程负责和客户端的读写,子进程负责数据处理。父子进程间通过管道通信。其实这里可以用共享内存。采用信号量来管理父子进程。
建议着重看看httpclient.c的代码,对post请求会有很好的理解。
tinyhttpserver.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
union semun
{
int val;
struct semid_ds *buf;
unsigned short *arry;
};
static int sem_id = 0;
static int sem_id1 = 0;
static int set_semvalue(int,int);
static void del_semvalue(int);
static int semaphore_p(int);
static int semaphore_v(int);
//pthread_mutex_t mutex;
//sem_t father_sem; //整型
//sem_t son_sem;
#define ISspace(x) isspace((int)(x))
#define SERVER_STRING "Server: jdbhttpd/0.1.0\r\n"
clock_t start,end;
void accept_request(int);
void bad_request(int);
void cat(int, FILE *);
void cannot_execute(int);
void error_die(const char *);
void execute_cgi(int, const char *, const char *, const char *);
int get_line(int, char *, int);
void headers(int/*, const char **/);
void not_found(int);
void serve_file(int, const char *);
int startup(u_short *);
void unimplemented(int);
/**********************************************************************/
/* A request has caused a call to accept() on the server port to
* return. Process the request appropriately.
* Parameters: the socket connected to the client */
/**********************************************************************/
void accept_request(int client)
{
char buf[1024];
int numchars;
char method[255];
char url[255];
char path[512];
size_t i, j;
struct stat st;
int cgi = 0; /* becomes true if server decides this is a CGI program */
char *query_string = NULL;
/*得到请求的第一行*/
/*GET / HTTP/1.1\n*/
numchars = get_line(client, buf, sizeof(buf));
i = 0; j = 0;
/*把客户端的请求方法存到 method 数组*/
/*用空格终止*/
/*strcasecmp忽略大小写比较字符串*/
while (!ISspace(buf[j]) && (i < sizeof(method) - 1))
{
method[i] = buf[j];
i++; j++;
}
method[i] = '\0';
/*如果既不是 GET 又不是 POST 则无法处理 */
if (strcasecmp(method, "GET") && strcasecmp(method, "POST"))
{
unimplemented(client);
return;
}
/* POST 的时候开启 cgi */
if (strcasecmp(method, "POST") == 0)
{
printf("识别为post\n");
cgi = 1;
}
/*读取 url 地址*/
i = 0;
while (ISspace(buf[j]) && (j < sizeof(buf)))
j++;
/*仍然用空格终止*/
while (!ISspace(buf[j]) && (i < sizeof(url) - 1) && (j < sizeof(buf)))
{
/*存下 url */
url[i] = buf[j];
i++; j++;
}
url[i] = '\0';
/*处理 GET 方法*/
if (strcasecmp(method, "GET") == 0)
{
/* 待处理请求为 url */
query_string = url;
while ((*query_string != '?') && (*query_string != '\0'))
query_string++;
/* GET 方法特点,? 后面为参数*/
if (*query_string == '?')
{
/*开启 cgi */
cgi = 1;
*query_string = '\0';
query_string++;
}
}
/*格式化 url 到 path 数组,html 文件都在 htdocs 中*/
sprintf(path, "htdocs%s", url);
/*默认情况为 index.html */
if (path[strlen(path) - 1] == '/')
strcat(path, "index.html");
/*根据路径找到对应文件 */
if (stat(path, &st) == -1) {
/*把所有 headers 的信息都丢弃*/
printf("路径没找到文件\n");
while ((numchars > 0) && strcmp("\n", buf)) /* read & discard headers */
numchars = get_line(client, buf, sizeof(buf));
/*回应客户端找不到*/
not_found(client);
}
else
{
printf("路径找到文件\n");
printf("path:%s\n",path);
/*如果是个目录,则默认使用该目录下 index.html 文件*/
if ((st.st_mode & S_IFMT) == S_IFDIR)
{
// printf("6666\n");
strcat(path, "/index.html");
}
/*文件权限:分别是所有者可执行、群组可执行、其他可执行*/
if ((st.st_mode & S_IXUSR) || (st.st_mode & S_IXGRP) || (st.st_mode & S_IXOTH) )
cgi = 1;
/*不是 cgi,直接把服务器文件返回,否则执行 cgi */
if (!cgi)
{
printf("cgi=0,进入serve_file\n");
printf("path:%s\n",path);
serve_file(client, path);
}
else
{
printf("cgi=1,进入execute_cgi\n");
execute_cgi(client, path, method, query_string);
}
}
/*断开与客户端的连接(HTTP 特点:无连接)*/
close(client);
}
/**********************************************************************/
/* Inform the client that a request it has made has a problem.
* Parameters: client socket */
/**********************************************************************/
void bad_request(int client)
{
char buf[1024];
/*回应客户端错误的 HTTP 请求 */
sprintf(buf, "HTTP/1.0 400 BAD REQUEST\r\n");
send(client, buf, sizeof(buf), 0);
sprintf(buf, "Content-type: text/html\r\n");
send(client, buf, sizeof(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, sizeof(buf), 0);
sprintf(buf, "Your browser sent a bad request, ");
send(client, buf, sizeof(buf), 0);
sprintf(buf, "such as a POST without a Content-Length.\r\n");
send(client, buf, sizeof(buf), 0);
}
/**********************************************************************/
/* Put the entire contents of a file out on a socket. This function
* is named after the UNIX "cat" command, because it might have been
* easier just to do something like pipe, fork, and exec("cat").
* Parameters: the client socket descriptor
* FILE pointer for the file to cat */
/**********************************************************************/
void cat(int client, FILE *resource)
{
char buf[1024];
printf("7777\n");
/*读取文件中的所有数据写到 socket */
fgets(buf, sizeof(buf), resource);
while (!feof(resource))
{
send(client, buf, strlen(buf), 0);
fgets(buf, sizeof(buf), resource);
}
printf("cat读取完毕\n");
}
/**********************************************************************/
/* Inform the client that a CGI script could not be executed.
* Parameter: the client socket descriptor. */
/**********************************************************************/
void cannot_execute(int client)
{
char buf[1024];
/* 回应客户端 cgi 无法执行*/
sprintf(buf, "HTTP/1.0 500 Internal Server Error\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "Content-type: text/html\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "
Error prohibited CGI execution.\r\n");
send(client, buf, strlen(buf), 0);
}
/**********************************************************************/
/* Print out an error message with perror() (for system errors; based
* on value of errno, which indicates system call errors) and exit the
* program indicating an error. */
/**********************************************************************/
void error_die(const char *sc)
{
/*出错信息处理 */
perror(sc);
exit(1);
}
/**********************************************************************/
/* Execute a CGI script. Will need to set environment variables as
* appropriate.
* Parameters: client socket descriptor
* path to the CGI script */
/**********************************************************************/
void execute_cgi(int client, const char *path,
const char *method, const char *query_string)
{
printf("进入execute_cgi\n");
char buf[1024];
int cgi_output[2];
int cgi_input[2];
pid_t pid;
int status;
int i;
char c;
int numchars = 1;
int content_length = -1;
buf[0] = 'A'; buf[1] = '\0';
if (strcasecmp(method, "GET") == 0)
while ((numchars > 0) && strcmp("\n", buf)) /* read & discard headers */
numchars = get_line(client, buf, sizeof(buf));
else /* POST */
{
numchars = get_line(client, buf, sizeof(buf));
while ((numchars > 0) && strcmp("\n", buf))
{
buf[15] = '\0';/*切割方便比较*/
if (strcasecmp(buf, "Content-Length:") == 0)
printf("buf[16]=%c\n",buf[16]);
/*atoi函数为字符串转整型,这里取buf[16]的地址,为字符串转整型准备。*/
content_length = atoi(&(buf[16]));
numchars = get_line(client, buf, sizeof(buf));
}
if (content_length == -1) {
printf("bad_request\n");
bad_request(client);
return;
}
}
printf("测试bad_request content_length=%d\n",content_length);
sprintf(buf, "HTTP/1.0 200 OK\r\n");
send(client, buf, strlen(buf), 0);
if (pipe(cgi_output) < 0) {
cannot_execute(client);
return;
}
if (pipe(cgi_input) < 0) {
cannot_execute(client);
return;
}
sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);
sem_id1 = semget((key_t)1235, 1, 0666 | IPC_CREAT);
if(!set_semvalue(sem_id,1))
{
fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);
}
if(!set_semvalue(sem_id1,0))
{
fprintf(stderr, "Failed to initialize semaphore\n");
exit(EXIT_FAILURE);
}
if ( (pid = fork()) < 0 ) {
cannot_execute(client);
return;
}
if (pid == 0) /* child: CGI script */
{
if(!semaphore_p(sem_id))
exit(EXIT_FAILURE);
// sem_wait(&son_sem);
// pthread_mutex_lock(&mutex);
printf("这是子进程,第一原子操作开始\n");
char meth_env[255];
char query_env[255];
char length_env[255];
dup2(cgi_output[1], 1);
dup2(cgi_input[0], 0);
close(cgi_output[0]);
close(cgi_input[1]);
sprintf(meth_env, "REQUEST_METHOD=%s", method);
putenv(meth_env);
if (strcasecmp(method, "GET") == 0) {
sprintf(query_env, "QUERY_STRING=%s", query_string);
putenv(query_env);
}
else { /* POST */
sprintf(length_env, "CONTENT_LENGTH=%d", content_length);
putenv(length_env);
}
//printf("第一原子操作完成\n");
if(!semaphore_v(sem_id1))
exit(EXIT_FAILURE);
// pthread_mutex_unlock(&mutex);
// sem_post(&father_sem);
//将信号量的值加一
// sem_wait(&son_sem);
// pthread_mutex_lock(&mutex);
if(!semaphore_p(sem_id))
exit(EXIT_FAILURE);
printf("服务器回应:\n");
// while (read(cgi_input[0], &c, 1) > 0)
char dd[30]={'\0'};
//gets(dd);
read(cgi_input[0], dd, sizeof(dd));
read(stdin,&dd,sizeof(dd));
printf("dd=%s\n",dd);
execl(path, path, NULL);
if(!semaphore_v(sem_id1))
exit(EXIT_FAILURE);
// pthread_mutex_unlock(&mutex);
exit(0);
} else {
printf("这是父进程,信号量初始化\n");
/* parent */
// printf("这是父进程,son_sem=%d,father_sem=%d\n",&son_sem,&father_sem);
// sem_wait(&father_sem);
// pthread_mutex_lock(&mutex);
if(!semaphore_p(sem_id1))
exit(EXIT_FAILURE);
printf("这是父进程 第二原子操作开始\n");
close(cgi_output[1]);
close(cgi_input[0]);
if (strcasecmp(method, "POST") == 0)
for (i = 0; i < content_length; i++) {
recv(client, &c, 1, 0);
printf("%c",c);/*不打\n换行符,无法显示?*/
write(cgi_input[1], &c, 1);
}
printf("recv完毕 第二原子操作结束\n");
if(!semaphore_v(sem_id))
exit(EXIT_FAILURE);
if(!semaphore_p(sem_id1))
exit(EXIT_FAILURE);
printf("父进程 第四原子操作开始\n");
// pthread_mutex_unlock(&mutex);
//将信号量的值加一
// sem_post(&son_sem);
// printf("son_sem+1,son_sem=%d\n",son_sem);
// sem_wait(&father_sem);
printf("send:\n");
char d[40]={'\0'};
int di=0;
while (read(cgi_output[0], &c, 1) > 0)
{
printf("%c",c);
d[di]=c;
di++;
}
d[++di]='\0';
send(client, d, sizeof(d), 0);
printf("send完毕\n");
close(cgi_output[0]);
close(cgi_input[1]);
printf("父进程 第四原子操作结束\n");
del_semvalue(sem_id);
del_semvalue(sem_id1);
waitpid(pid, &status, 0);
}
}
/**********************************************************************/
/* Get a line from a socket, whether the line ends in a newline,
* carriage return, or a CRLF combination. Terminates the string read
* with a null character. If no newline indicator is found before the
* end of the buffer, the string is terminated with a null. If any of
* the above three line terminators is read, the last character of the
* string will be a linefeed and the string will be terminated with a
* null character.
* Parameters: the socket descriptor
* the buffer to save the data in
* the size of the buffer
* Returns: the number of bytes stored (excluding null) */
/**********************************************************************/
int get_line(int sock, char *buf, int size)
{
int i = 0;
char c = '\0';
int n;
/*把终止条件统一为 \n 换行符,标准化 buf 数组*/
while ((i < size - 1) && (c != '\n'))
{
/*一次仅接收一个字节*/
n = recv(sock, &c, 1, 0);
/* DEBUG printf("%02X\n", c); */
if (n > 0)
{
/*上文已经将终止条件设定为\n,接下来考虑的是:如果是以\r\n为结束位和\r为结束位,该如何将其改为\n为结束位*/
/*对于\r为结束位,直接改为\n结束位*/
/*对于\r\n为结束位,将\r\n改为\n,作为结束位*/
/*收到 \r 则继续接收下个字节,因为换行符可能是 \r\n */
if (c == '\r')
{
/*MSG_PEEK撇一眼*/
/*使用 MSG_PEEK 标志使下一次读取依然可以得到这次读取的内容,可认为接收窗口不滑动*/
/*撇一眼判断是不是\r\n*/
n = recv(sock, &c, 1, MSG_PEEK);
/* DEBUG printf("%02X\n", c); */
/*但如果是换行符则把它吸收掉*/
if ((n > 0) && (c == '\n'))
recv(sock, &c, 1, 0);
else
c = '\n';
}
/*存到缓冲区*/
buf[i] = c;
i++;
}
else
c = '\n';
}
buf[i] = '\0';
/*返回 buf 数组大小*/
return(i);
}
/**********************************************************************/
/* Return the informational HTTP headers about a file. */
/* Parameters: the socket to print the headers on
* the name of the file */
/**********************************************************************/
void headers(int client/*, const char *filename*/)
{
char buf[1024];
int ret=0;
// (void)filename; /* could use filename to determine file type */
printf("headers开始\n");
strcpy(buf, "HTTP/1.0 200 OK\r\n");
ret=send(client, buf, strlen(buf), 0);
if(ret==-1)
{
printf("songshiqi\n");
perror("1send");
}
strcpy(buf, SERVER_STRING);
ret=send(client, buf, strlen(buf), 0);
if(ret==-1)
{
printf("songshiqi\n");
perror("2send");
}
printf("headers中场\n");
sprintf(buf, "Content-Type: text/html\r\n");
ret=send(client, buf, strlen(buf), 0);
if(ret==-1)
{
perror("3send");
}
strcpy(buf, "\r\n");
ret=send(client, buf, strlen(buf), 0);
if(ret==-1)
{
perror("4send");
}
printf("headers结束\n");
}
/**********************************************************************/
/* Give a client a 404 not found status message. */
/**********************************************************************/
void not_found(int client)
{
char buf[1024];
/* 404 页面 */
sprintf(buf, "HTTP/1.0 404 NOT FOUND\r\n");
send(client, buf, strlen(buf), 0);
/*服务器信息*/
sprintf(buf, SERVER_STRING);
send(client, buf, strlen(buf), 0);
sprintf(buf, "Content-Type: text/html\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "
Not Found \r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "The server could not fulfill\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "your request because the resource specified\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "is unavailable or nonexistent.\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, strlen(buf), 0);
}
/**********************************************************************/
/* Send a regular file to the client. Use headers, and report
* errors to client if they occur.
* Parameters: a pointer to a file structure produced from the socket
* file descriptor
* the name of the file to serve */
/**********************************************************************/
void serve_file(int client, const char *filename)
{
FILE *resource = NULL;
int numchars = 1;
char buf[1024];
buf[0] = 'A'; buf[1] = '\0';
while ((numchars > 0) && strcmp("\n", buf)) /* read & discard headers */
numchars = get_line(client, buf, sizeof(buf));
resource = fopen(filename, "r");
if (resource == NULL)
not_found(client);
else
{
printf("sesource不为0,即将执行headers和cat\n");
headers(client/*, filename*/);
cat(client, resource);
}
//sleep(1);
fclose(resource);
printf("线程已执行完毕\n");
end = clock();
printf("songshiqi\n");
printf("time=%f\n",(double)(end-start)/1000);
}
/**********************************************************************/
/* This function starts the process of listening for web connections
* on a specified port. If the port is 0, then dynamically allocate a
* port and modify the original port variable to reflect the actual
* port.
* Parameters: pointer to variable containing the port to connect on
* Returns: the socket */
/**********************************************************************/
int startup(u_short *port)
{
int httpd = 0;
struct sockaddr_in name;
httpd = socket(PF_INET, SOCK_STREAM, 0);/*创建一个TCP套接字*/
if (httpd == -1)
error_die("socket");
memset(&name, 0, sizeof(name));
name.sin_family = AF_INET;
name.sin_port = htons(11004);/*若端口为0,则系统随机选择一个未被使用的端口号,这里改为指定一个空闲的端口号*/
name.sin_addr.s_addr = htonl(INADDR_ANY);/*系统自动填入本机IP*/
if (bind(httpd, (struct sockaddr *)&name, sizeof(name)) < 0)/*socket绑定到制定的IP地址和端口号*/
error_die("bind");
if (*port == 0) /* if dynamically allocating a port */
{
int namelen = sizeof(name);
/*获取主机名,从而获取分配的端口号*/
if (getsockname(httpd, (struct sockaddr *)&name, (socklen_t *)&namelen) == -1)
error_die("getsockname");
*port = ntohs(name.sin_port);
}
if (listen(httpd, 5) < 0)/*监听连接请求。5--backlog:系统维护的一个跟踪握手未完成的连接的队列的大小*/
error_die("listen");
return(httpd);
}
/**********************************************************************/
/* Inform the client that the requested web method has not been
* implemented.
* Parameter: the client socket */
/**********************************************************************/
void unimplemented(int client)
{
char buf[1024];
/* HTTP method 不被支持*/
sprintf(buf, "HTTP/1.0 501 Method Not Implemented\r\n");
send(client, buf, strlen(buf), 0);
/*服务器信息*/
sprintf(buf, SERVER_STRING);
send(client, buf, strlen(buf), 0);
sprintf(buf, "Content-Type: text/html\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "
Method Not Implemented\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, " \r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "HTTP request method not supported.\r\n");
send(client, buf, strlen(buf), 0);
sprintf(buf, "\r\n");
send(client, buf, strlen(buf), 0);
}
/**********************************************************************/
int main(void)
{
// pthread_mutex_init(&mutex, NULL);
//初始化信号量
// sem_init(&son_sem, 1, 0); //将son_sem值置为1
// sem_init(&father_sem, 1, 0); //将father_sem值置为0
//sem_post(&father_sem);
int server_sock = -1;
u_short port = 0;
int client_sock = -1;
struct sockaddr_in client_name;
int client_name_len = sizeof(client_name);
pthread_t newthread;
/*在对应端口建立 httpd 服务*/
server_sock = startup(&port);
printf("httpd running on port %d\n", port);
int songshiqi=1;
while (1)
{
/*套接字收到客户端连接请求*/
client_sock = accept(server_sock,(struct sockaddr *)&client_name,&client_name_len);
printf("there have a client,num %d\n",songshiqi);
start = clock();
songshiqi++;
if (client_sock == -1)
error_die("accept");
/*派生新线程用 accept_request 函数处理新请求*/
/* accept_request(client_sock); */
if (pthread_create(&newthread , NULL, accept_request, client_sock) != 0)
perror("pthread_create");
// sleep(1);
// exit(1);
}
close(server_sock);
return(0);
}
static int set_semvalue(int sem_id,int i)
{
//用于初始化信号量,在使用信号量前必须这样做
union semun sem_union;
sem_union.val = i;
if(semctl(sem_id, 0, SETVAL, sem_union) == -1)
return 0;
return 1;
}
static void del_semvalue(int sem_id)
{
//删除信号量
union semun sem_union;
if(semctl(sem_id, 0, IPC_RMID, sem_union) == -1)
fprintf(stderr, "Failed to delete semaphore\n");
}
static int semaphore_p(int sem_id)
{
//对信号量做减1操作,即等待P(sv)
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = -1;//P()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_p failed\n");
return 0;
}
return 1;
}
static int semaphore_v(int sem_id)
{
//这是一个释放操作,它使信号量变为可用,即发送信号V(sv)
struct sembuf sem_b;
sem_b.sem_num = 0;
sem_b.sem_op = 1;//V()
sem_b.sem_flg = SEM_UNDO;
if(semop(sem_id, &sem_b, 1) == -1)
{
fprintf(stderr, "semaphore_v failed\n");
return 0;
}
return 1;
}
tinyhttpclient.c
#include
#include
#include
#include
#include
#include
#include
/*服务器发送了3个包,客户端接收一个包,但量一样,保证量。*/
/*当前读取,当前读取,可能会漏读很多*/
/*关注recv阻塞*/
clock_t start,end;
int main(int argc, char *argv[])
{
int sockfd;
int len;
struct sockaddr_in address;
int result;
char buf[] = "POST / HTTP/1.1\nContent-Length:119\n\nsongshiqixieaoxieao\n\n";
char get[1024] = {0};
sockfd = socket(AF_INET, SOCK_STREAM, 0);
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr("127.0.0.1");/*本机IP地址*/
address.sin_port = htons(11004);/*tinyhttpd的端口*/
len = sizeof(address);
result = connect(sockfd, (struct sockaddr *)&address, len);
if (result == -1)
{
perror("oops:client:");
_exit(1);
}
start = clock();
write(sockfd,buf, sizeof(buf));/*发送请求*/
// time_t start,end;
// start =time(NULL);//or time(&start);
int ret=1;
int myalready=0;
int songshiqi=0;
sleep(2);
//ret=read(sockfd,get+myalready, sizeof(get));/*接收返回数据*/
//songshiqi++;
// myalready=+ret;
while(/*myalready<240*/1)
{
ret=read(sockfd,get+myalready, sizeof(get));/*接收返回数据*/
if(ret==-1)
{
perror("ret");
break;
}
//sleep(1);
songshiqi++;
myalready=+ret;
printf("songshiqi=%d ret=%d myalready=%d\n",songshiqi,ret,myalready);
}
end =clock();
printf("time=%lf\n",(double)(end-start)/1000);
/*打印返回数据*/
printf("-----------------------------show buffer -----------------------------\n");
printf("%s",get);
printf("----------------------------------------------------------------------\n");
close(sockfd);
_exit(0);
}