Final Project

Name:Li Jinhong
Class:材料班
Student ID:2014301020141

Back Ground

A random walk is a mathematical object which describes a path that consists of a succession of random steps. For example, the path traced by a molecule as it travels in a liquid or a gas, the search path of a foraging animal, superstring behavior, the price of a fluctuating stock and the financial status of a gambler can all be approximated by random walk models, even though they may not be truly random in reality.The term random walk was first introduced by Karl Pearson in 1905.


Final Project_第1张图片

Abstract
Random Walks
Random Walks and Diffusion

The Main Body
What is Random Walk
The simplest random walk to understand is a 1-dimensional walk. Suppose that the black dot below is sitting on a number line. The black dot starts in the center.


Then, it takes a step, either forward or backward, with equal probability. It keeps taking steps either forward or backward each time. Let's call the 1st step a1, the second step a2, the third step a3 and so on. Each "a" is either equal to +1 (if the step is forward) or -1 (if the step is backward). The picture below shows a black dot that has taken 5 steps and ended up at -1 on the number line.
Final Project_第2张图片

code:
import randomimport matplotlib.pyplot as pltclass random_walks: def init(self,n=100,step_length=0.1): self.x=[0] self.y=[0] self.x2=[0] self.n=n self.l=step_length def walk1(self):#random walk with step_length=1 for i in range(1,self.n): self.x.append(i) temp=random.random() if temp < 0.5: self.y.append(self.y[-1]-self.l) elif temp > 0.5: self.y.append(self.y[-1]+self.l) self.x2.append(self.x2[-1]+self.l 2) def walk2(self):#random walk with random step-length for i in range(1,self.n): self.x.append(i) temp=random.random() self.l=random.random() if temp < 0.5: self.y.append(self.y[-1]-self.l) elif temp > 0.5: self.y.append(self.y[-1]+self.l) self.x2.append(self.x2[-1]+self.l2) def show1(self): plt.plot(self.x,self.y,'o') plt.title('random walk in one dimension') plt.xlabel('step number') plt.ylabel('x') plt.grid(True) def show2(self): plt.plot(self.x,self.x2,'.',label='$$ versus time') plt.title('random walk in one dimension') plt.xlabel('step number') plt.ylabel('$$') plt.legend(frameon=True) plt.grid(True)a=random_walks()a.walk1()a.show1()b=random_walks()b.walk1()b.show1()

random walk with step length=1:
Final Project_第3张图片

x versus step number(time), for two random walks in one dimension

Final Project_第4张图片

random walk with random step lengths:
Final Project_第5张图片

Final Project_第6张图片

Random Walks and Diffusion
An alternative way to describe the same physics involves the density of particles, ρ(x,y,z,t), which can be conveniently defined if the system contains a large number of particles (walkers). The idea, known as coarse graining, is to consider regions of space that are big enough to contain a large number of particles so that the density ( =mass/ volume) can be meaningfully defined. The density is then proportional to the probability per unit volume per unit time, denoted by P(x,y,z, t), to find a particle at (x, y, z) at time t. Thus, ρ and P obey the same equation.To find this equation, we focus back on an individual random walker. We assume that it is confined to take steps on a simple-cubic lattice, and that it makes one "walking step" each time step. P(i, j, k, n) is the probability to find the particle at the side (i, j, k) at time n. Since we are on a simple cubic lattice, there are 6 different nearest neighbor sites. If the walker is on one of these sites at time n-1, there is a probability of 1/6 that it will then move to site (i, j, k) at time n. Hence, the total probability to arrive at (i, j, k) is :

Rearranging the equation,and it suggests takking the continuum limit,which lead to:

This derivation shows the close connection between the random walks and diffusion.The density ρ obeys the same equation:

For ease of notation we will assume that ρ is a function of only one spatial dimension, x, although everything we do below can readily be extended to two or three dimensions. We can then write

so that the first index corresponds to space and the second to time.

and the finite-difference version of this is

rearranging to express the density at time step n+1 in terms of ρ at step n we find

code:
import pylab as pltimport numpy as np N=101dx=2./(N-1)dt=0.1D=1./4 (dx 2)/dtclass diffusion: def init(self,step): self.step=step self.x=np.linspace(-1,1,N) self.y=np.linspace(0,0,N) self.old_y=np.linspace(0,0,N) self.y[50]=1 def update(self): for i in range(N): self.old_y[i]=self.y[i] for i in range(1,N-1): self.y[i]=self.old_y[i]+Ddt/(dx 2)(self.old_y[i+1]+self.old_y[i-1]-2self.old_y[i]) def fire(self): for i in range(self.step): self.update() i+=1 plt.plot(self.x,self.y,label="step="+str(self.step))A=diffusion(1000)A.fire()A=diffusion(100)A.fire()A=diffusion(10)A.fire()A=diffusion(50)A.fire()A=diffusion(200)A.fire()A=diffusion(500)A.fire()plt.legend(loc="best")plt.show()

Final Project_第7张图片

import matplotlib.pyplot as pltimport numpy as npimport randomclass rand_walks: def init(self,l=100,N=5000,time=1000): self.l=l self.N=N self.n=time self.loca=[[0] self.l] def walk(self): self.loca[-1][int(self.l/2)]=self.N counter=0 while(1): counter+=1 temp=[0]self.l for i in range(self.l-2): for j in range(self.loca[-1][i+1]): rand=random.random() if rand>0.5: temp[i+2]+=1 elif rand<0.5: temp[i]+=1 self.loca.append(temp) if counter>self.n: break def show(self): x=np.arange(0,100,1) plt.plot(x,self.loca[-1],'.') plt.plot(x,self.loca[-1],label='time=%.f'%self.n) plt.title('random walks of %.f particles'%self.N) plt.xlabel('x') plt.ylabel('number of particles') plt.grid(True) plt.legend(frameon=True)b=rand_walks(time=10)b.walk()b.show()b=rand_walks(time=100)b.walk()b.show()b=rand_walks(time=1000)b.walk()b.show()

Final Project_第8张图片

Final Project_第9张图片

Final Project_第10张图片

Final Project_第11张图片

Acknowledgement
Nicholas J.Giodano's computational physics.

你可能感兴趣的:(Final Project)