深度学习之卷积神经网络(CNN)详解与代码实现(二)

                                

                            用Tensorflow实现卷积神经网络(CNN)

            本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065.html 

目录

1.踩过的坑(tensorflow)

2.tensorboard

3.代码实现(python3.5)

4.运行结果以及分析

 

1.踩过的坑(tensorflow)

上一章CNN中各个算法都是纯手工实现的,可能存在一些难以发现的问题,这也是准确率不高的一个原因,这章主要利用tensorflow框架来实现卷积神经网络,数据源还是cifar(具体下载见上一章)

在利用tensorflow框架实现CNN时,需要注意以下几点:

1.输入数据定义时,x只是起到占位符的作用(看不到真实值,只是为了能够运行代码,获取相应的tensor节点,这一点跟我们之前代码流程完全相反, 真正数据流的执行在session会话里) 

x:输入数据,y_: 标签数据,keep_prob: 概率因子,防止过拟合。

定义,且是全局变量。

x = tf.placeholder(tf.float32, [None, 3072], name='x') 
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
keep_prob = tf.placeholder(tf.float32)

后面在session里必须要初始化

sess.run(tf.global_variables_initializer())

在session run时必须要传得到该tensor节点含有参数值(x, y_, keep_prob)

 

train_accuracy = accuracy.eval(feed_dict={
                    x: batch[0], y_: batch[1], keep_prob: 1.0})

 

2.原始数据集标签要向量化;

例如cifar有10个类别,如果类别标签是 6 对应向量[0,0,0,0,0,1,0,0,0,0]

3.知道每一步操作的数据大小的变化,不然,报错的时候很难定位(个人认为这也是tensorflow的弊端,无法实时追踪定位);

  注意padding = 'SAME'和'VALID'的区别

  padding = 'SAME' => Height_后 = Height_前/Strides 跟padding无关  向上取整

  padding = 'VALID'=>  Height_后 = (Height_前 - Filter + 1)/Strides  向上取整

4.打印tensorboard流程图,可以直观看到每步操作数据大小的变化;

2. tensorboard

tensorboard就是一个数据结构流程图的可视化工具,通过tensorboard流程图,可以直观看到神经网络的每一步操作以及数据流的变化。

操作步骤:

1. 在session会话里加入如下代码,打印结果会在当前代码文件相同路径的tensorboard文件下,默认是

tf.summary.FileWriter("tensorboard/", sess.graph)

2. 在运行里输入cmd,然后输入(前提是安装好了tensorboard => pip install  tensorboard)

tensorboard --logdir=D:\Project\python\myProject\CNN\tensorflow\captchaIdentify\tensorboard --host=127.0.0.1

'D:\Project\python\myProject\CNN\tensorflow\captchaIdentify\tensorboard' 是我生成的tensorboard文件的绝对路径,你替换成你自己的就可以了。

正确运行后会显示 ‘Tensorboard at http://127.0.0.1:6006’,说明tensorboard服务已经起来了,在浏览器页面输入

http://127.0.0.1:6006即可显示流程图。

3.代码实现(python3.6)

代码逻辑实现相对比较简单,在一些重要逻辑实现上,我已做了注释,如果大家有什么疑义,可以留言给我,我们一起交流。

因为原始图片数据集太大,不好上传,大家可以直接在http://www.cs.toronto.edu/~kriz/cifar.html下载CIFAR-10 python version,

有163M,放在代码文件同路径下即可。

cifar放置路径

 深度学习之卷积神经网络(CNN)详解与代码实现(二)_第1张图片

 

start.py

 

  1 # coding=utf-8
  2 # Disable linter warnings to maintain consistency with tutorial.
  3 # pylint: disable=invalid-name
  4 # pylint: disable=g-bad-import-order
  5 from __future__ import absolute_import
  6 from __future__ import division
  7 from __future__ import print_function
  8 import argparse
  9 import sys
 10 import tempfile
 11 #from tensorflow.examples.tutorials.mnist import input_data
 12 import tensorflow as tf
 13 '''
 14  卷积神经网络实现10类(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) 
 15  60000张图片的识别
 16  5000次,准确率有 58%;
 17  20000次,准确率有 68.89%;
 18  相比mnist数字图片识别准确度低,原因有:
 19  mnist训练图片是灰度图片,纹理简单,数字的可变性小,而cifar是彩色图片,纹理复杂,动物可变性大;
 20 '''
 21 try:
 22     from . import datesets
 23 except Exception:
 24     import datesets
 25 
 26 FLAGS = None
 27 
 28 def deepnn(x):
 29     with tf.name_scope('reshape'):
 30         x_image = tf.reshape(x, [-1, 32, 32, 3])
 31     ## 第一层卷积操作 ##
 32     with tf.name_scope('conv1'):
 33         W_conv1 = weight_variable([5, 5, 3, 32])
 34         b_conv1 = bias_variable([32])
 35         h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
 36 
 37     with tf.name_scope('pool1'):
 38         h_pool1 = max_pool_2x2(h_conv1)
 39 
 40     # Second convolutional layer -- maps 32 feature maps to 64.
 41     ## 第二层卷积操作 ##
 42     with tf.name_scope('conv2'):
 43         W_conv2 = weight_variable([5, 5, 32, 64])
 44         b_conv2 = bias_variable([64])
 45         h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
 46 
 47     with tf.name_scope('pool2'):
 48         h_pool2 = max_pool_2x2(h_conv2)
 49 
 50     ## 第三层全连接操作 ##
 51     with tf.name_scope('fc1'):
 52         W_fc1 = weight_variable([8 * 8 * 64, 1024])
 53         b_fc1 = bias_variable([1024])
 54         h_pool2_flat = tf.reshape(h_pool2, [-1, 8 * 8 * 64])
 55         h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
 56 
 57     with tf.name_scope('dropout'):
 58         keep_prob = tf.placeholder(tf.float32)
 59         h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 60 
 61     ## 第四层输出操作 ##
 62     with tf.name_scope('fc2'):
 63         W_fc2 = weight_variable([1024, 10])
 64         b_fc2 = bias_variable([10])
 65         y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
 66     return y_conv, keep_prob
 67 
 68 def conv2d(x, W):
 69     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
 70 
 71 def max_pool_2x2(x):
 72     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 73                           strides=[1, 2, 2, 1], padding='SAME')
 74 
 75 def weight_variable(shape):
 76     initial = tf.truncated_normal(shape, stddev=0.1)
 77     return tf.Variable(initial)
 78 
 79 def bias_variable(shape):
 80     initial = tf.constant(0.1, shape=shape)
 81     return tf.Variable(initial)
 82 
 83 def main(_):
 84     # Import data
 85     mnist = datesets.read_data_sets(train_dir = '.\\cifar-10-batches-py\\', one_hot=True)
 86 
 87     # Create the model
 88     # 声明一个占位符,None表示输入图片的数量不定,28*28图片分辨率
 89     x = tf.placeholder(tf.float32, [None, 3072], name='x')
 90 
 91     # 类别是0-9总共10个类别,对应输出分类结果
 92     y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
 93     y_conv, keep_prob = deepnn(x)
 94     # 通过softmax-loss求交叉熵
 95     with tf.name_scope('loss'):
 96         cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
 97     # 求均值
 98     cross_entropy = tf.reduce_mean(cross_entropy)
 99     # 计算梯度,更新参数值
100     with tf.name_scope('adam_optimizer'):
101         train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
102 
103     with tf.name_scope('accuracy'):
104         correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
105         correct_prediction = tf.cast(correct_prediction, tf.float32)
106     accuracy = tf.reduce_mean(correct_prediction)
107 
108    # graph_location = tempfile.mkdtemp()
109    # print('Saving graph to: %s' % graph_location)
110    # train_writer.add_graph(tf.get_default_graph())
111 
112     with tf.Session() as sess:
113         # 打印流程图
114         writer = tf.summary.FileWriter("tensorboard/", sess.graph)
115         sess.run(tf.global_variables_initializer())
116         for i in range(20000):
117             batch = mnist.train.next_batch(50)
118             if i % 1000 == 0:
119                 train_accuracy = accuracy.eval(feed_dict={
120                     x: batch[0], y_: batch[1], keep_prob: 1.0})
121                 print('step %d, training accuracy %g' % (i, train_accuracy))
122             train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
123 
124         print('test accuracy %g' % accuracy.eval(feed_dict={
125             x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
126 
127 if __name__ == '__main__':
128     parser = argparse.ArgumentParser()
129     parser.add_argument('--data_dir', type=str,
130                         default='/tmp/tensorflow/mnist/input_data',
131                         help='Directory for storing input data')
132     FLAGS, unparsed = parser.parse_known_args()
133     tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
View Code

datasets.py

  1 import numpy
  2 from tensorflow.python.framework import dtypes
  3 from tensorflow.python.framework import random_seed
  4 from six.moves import xrange
  5 from tensorflow.contrib.learn.python.learn.datasets import base
  6 import pickle
  7 import os
  8 
  9 class DataSet(object):
 10     """Container class for a dataset (deprecated).
 11 
 12     THIS CLASS IS DEPRECATED. See
 13     [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md)
 14     for general migration instructions.
 15     """
 16     def __init__(self,
 17                  images,
 18                  labels,
 19                  fake_data=False,
 20                  one_hot=False,
 21                  dtype=dtypes.float32,
 22                  reshape=True,
 23                  seed=None):
 24         """Construct a DataSet.
 25         one_hot arg is used only if fake_data is true.  `dtype` can be either
 26         `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
 27         `[0, 1]`.  Seed arg provides for convenient deterministic testing.
 28         """
 29         seed1, seed2 = random_seed.get_seed(seed)
 30         # If op level seed is not set, use whatever graph level seed is returned
 31         numpy.random.seed(seed1 if seed is None else seed2)
 32         dtype = dtypes.as_dtype(dtype).base_dtype
 33         if dtype not in (dtypes.uint8, dtypes.float32):
 34             raise TypeError(
 35                 'Invalid image dtype %r, expected uint8 or float32' % dtype)
 36         if fake_data:
 37             self._num_examples = 10000
 38             self.one_hot = one_hot
 39         else:
 40             assert images.shape[0] == labels.shape[0], (
 41                 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
 42             self._num_examples = images.shape[0]
 43 
 44             # Convert shape from [num examples, rows, columns, depth]
 45             # to [num examples, rows*columns] (assuming depth == 1)
 46             if reshape:
 47                 assert images.shape[3] == 3
 48                 images = images.reshape(images.shape[0],
 49                                         images.shape[1] * images.shape[2] * images.shape[3])
 50             if dtype == dtypes.float32:
 51                 # Convert from [0, 255] -> [0.0, 1.0].
 52                 images = images.astype(numpy.float32)
 53                 images = numpy.multiply(images, 1.0 / 255.0)
 54         self._images = images
 55         self._labels = labels
 56         self._epochs_completed = 0
 57         self._index_in_epoch = 0
 58 
 59     @property
 60     def images(self):
 61         return self._images
 62 
 63     @property
 64     def labels(self):
 65         return self._labels
 66 
 67     @property
 68     def num_examples(self):
 69         return self._num_examples
 70 
 71     @property
 72     def epochs_completed(self):
 73         return self._epochs_completed
 74 
 75     def next_batch(self, batch_size, fake_data=False, shuffle=True):
 76         """Return the next `batch_size` examples from this data set."""
 77         if fake_data:
 78             fake_image = [1] * 784
 79             if self.one_hot:
 80                 fake_label = [1] + [0] * 9
 81             else:
 82                 fake_label = 0
 83             return [fake_image for _ in xrange(batch_size)], [
 84                 fake_label for _ in xrange(batch_size)
 85             ]
 86         start = self._index_in_epoch
 87         # Shuffle for the first epoch
 88         if self._epochs_completed == 0 and start == 0 and shuffle:
 89             perm0 = numpy.arange(self._num_examples)
 90             numpy.random.shuffle(perm0)
 91             self._images = self.images[perm0]
 92             self._labels = self.labels[perm0]
 93         # Go to the next epoch
 94         if start + batch_size > self._num_examples:
 95             # Finished epoch
 96             self._epochs_completed += 1
 97             # Get the rest examples in this epoch
 98             rest_num_examples = self._num_examples - start
 99             images_rest_part = self._images[start:self._num_examples]
100             labels_rest_part = self._labels[start:self._num_examples]
101             # Shuffle the data
102             if shuffle:
103                 perm = numpy.arange(self._num_examples)
104                 numpy.random.shuffle(perm)
105                 self._images = self.images[perm]
106                 self._labels = self.labels[perm]
107             # Start next epoch
108             start = 0
109             self._index_in_epoch = batch_size - rest_num_examples
110             end = self._index_in_epoch
111             images_new_part = self._images[start:end]
112             labels_new_part = self._labels[start:end]
113             return numpy.concatenate(
114                 (images_rest_part, images_new_part), axis=0), numpy.concatenate(
115                 (labels_rest_part, labels_new_part), axis=0)
116         else:
117             self._index_in_epoch += batch_size
118             end = self._index_in_epoch
119             return self._images[start:end], self._labels[start:end]
120 
121 def read_data_sets(train_dir,
122                    one_hot=False,
123                    dtype=dtypes.float32,
124                    reshape=True,
125                    validation_size=5000,
126                    seed=None):
127 
128 
129 
130 
131     train_images,train_labels,test_images,test_labels = load_CIFAR10(train_dir)
132     if not 0 <= validation_size <= len(train_images):
133         raise ValueError('Validation size should be between 0 and {}. Received: {}.'
134                          .format(len(train_images), validation_size))
135 
136     validation_images = train_images[:validation_size]
137     validation_labels = train_labels[:validation_size]
138     validation_labels = dense_to_one_hot(validation_labels, 10)
139     train_images = train_images[validation_size:]
140     train_labels = train_labels[validation_size:]
141     train_labels = dense_to_one_hot(train_labels, 10)
142 
143     test_labels = dense_to_one_hot(test_labels, 10)
144 
145     options = dict(dtype=dtype, reshape=reshape, seed=seed)
146     train = DataSet(train_images, train_labels, **options)
147     validation = DataSet(validation_images, validation_labels, **options)
148     test = DataSet(test_images, test_labels, **options)
149 
150     return base.Datasets(train=train, validation=validation, test=test)
151 
152 
153 def load_CIFAR_batch(filename):
154     """ load single batch of cifar """
155     with open(filename, 'rb') as f:
156         datadict = pickle.load(f, encoding='bytes')
157         X = datadict[b'data']
158         Y = datadict[b'labels']
159         X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
160         Y = numpy.array(Y)
161         return X, Y
162 
163 def load_CIFAR10(ROOT):
164     """ load all of cifar """
165     xs = []
166     ys = []
167     for b in range(1,6):
168         f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
169         X, Y = load_CIFAR_batch(f)
170         xs.append(X)
171         ys.append(Y)
172     Xtr = numpy.concatenate(xs)
173     Ytr = numpy.concatenate(ys)
174     del X, Y
175     Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
176     return Xtr, Ytr, Xte, Yte
177 
178 def dense_to_one_hot(labels_dense, num_classes):
179     """Convert class labels from scalars to one-hot vectors."""
180     num_labels = labels_dense.shape[0]
181     index_offset = numpy.arange(num_labels) * num_classes
182     labels_one_hot = numpy.zeros((num_labels, num_classes))
183     labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
184     return labels_one_hot
View Code

 

4.运行结果以及分析

这里选取55000张图片作为训练样本,测试样本选取5000张。

tensorboard可视流程图

 深度学习之卷积神经网络(CNN)详解与代码实现(二)_第2张图片

运行5000次,测试准确率:58%

 深度学习之卷积神经网络(CNN)详解与代码实现(二)_第3张图片

运行20000次,测试准确率:68.89%

深度学习之卷积神经网络(CNN)详解与代码实现(二)_第4张图片

 运行40000次,测试准确率71.95%

 深度学习之卷积神经网络(CNN)详解与代码实现(二)_第5张图片

分析:由最后一张图片可以看出,20000 - 30000次时测试准确率=> 70.27% ->71.44%,30000 - 40000次时=> 71.44% -> 71.95%

而训练准确率已经达到100%,说明测试准确率已经趋于一个稳定值,再增加训练次数,测试准确率提高的可能性不大。

如果想要继续提高测试准确率,就只能增加训练样本。

 

 

 

不要让懒惰占据你的大脑,不要让妥协拖垮了你的人生。青春就是一张票,能不能赶上时代的快车,你的步伐就掌握在你的脚下。

你可能感兴趣的:(深度学习之卷积神经网络(CNN)详解与代码实现(二))