- 上位机知识篇---文件系统
Atticus-Orion
上位机知识篇文件系统windowslinuxFATNTFSext4ZFS
文章目录前言1.FAT(FileAllocationTable)版本FAT12FAT16FAT32优势兼容性好简单轻量适合小文件存储劣势不支持大文件性能较差缺乏高级功能使用场景2.NTFS(NewTechnologyFileSystem)优势支持大文件和大分区高性能日记功能权限控制劣势兼容性差不适合嵌入式设备使用场景3.exFAT(ExtendedFileAllocationTable)优势支持大
- 用Python做数据分析之数据统计
学掌门
Python数据分析大数据python数据分析人工智能
接下来说说数据统计部分,这里主要介绍数据采样,标准差,协方差和相关系数的使用方法。1、数据采样Excel的数据分析功能中提供了数据抽样的功能,如下图所示。Python通过sample函数完成数据采样。2、数据抽样Sample是进行数据采样的函数,设置n的数量就可以了。函数自动返回参与的结果。1#简单的数据采样2df_inner.sample(n=3)3、简单随机采样Weights参数是采样的权重,
- 目前主流图像分类模型的详细对比分析
@comefly
闲聊linux运维服务器
以下是目前主流图像分类模型的详细对比分析,结合性能、架构特点及应用场景进行整理:一、主流模型架构分类与定量对比模型名称架构类型核心特点ImageNetTop-1准确率参数量(百万)计算效率典型应用场景ResNetCNN残差连接解决梯度消失,支持超深网络(如ResNet-152)76.1%25.6中等通用分类、目标检测ViTTransformer将图像分割为patches,用标准Transforme
- Spring Boot整合PF4J:构建动态插拔的组件化架构
前言在当今快速迭代的软件开发领域,业务需求的频繁变更对系统架构的灵活性和可扩展性提出了极高要求。传统的单体应用架构在面对功能的不断新增和修改时,往往会陷入代码臃肿、维护困难、扩展性差的困境。组件化开发,为解决这些问题提供了新的思路,通过实现组件的动态插拔,让系统能够更敏捷地响应业务变化。1.背景在大部分业务场景,微服务拆分不是一个好的选择。服务拆分带来有几方面的挑战:1)成本增加。微服务单独部署需
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- Google机器学习实践指南(模型预测偏差)
AI_Auto
人工智能机器学习人工智能
Google机器学习(31)-模型预测偏差预测偏差:模型为何总是"猜不准"的真相揭秘你的模型预测准确率高达95%,却总是与实际情况差那么一点点?这可能是预测偏差在作祟!本文将带你深入探索这个被忽视的模型"隐形杀手"。一、什么是预测偏差?一个生活化案例想象一下,你网购了一个智能体重秤,连续一周称重显示都是60kg。但你去健身房用专业设备测量,实际是62kg。这种系统性的测量偏差,就是预测偏差在现实中
- 线性稳压电路:从理论到实践的全维度深度解析 陆冠旭
澪622
数学建模
摘要本文提出创新的"电源完整性四维分析法",系统性地解构线性稳压器设计。通过建立量子-经典混合稳压模型,开发动态压差补偿算法和PSRR频率折叠技术,解决了纳米级工艺下的稳压挑战。包含12个设计黄金法则、23个跨领域应用案例和完整的验证方法论,为工程师提供从基础到前沿的全套解决方案。**关键词**:四维电源分析、量子稳压、自愈合LDO、动态热管理、光子-电子协同##1.量子化稳压理论###1.1载流
- 前缀和题目:有序数组中差绝对值之和
伟大的车尔尼
数据结构和算法#前缀和前缀和
文章目录题目标题和出处难度题目描述要求示例数据范围解法思路和算法代码复杂度分析题目标题和出处标题:有序数组中差绝对值之和出处:1685.有序数组中差绝对值之和难度6级题目描述要求给定一个非递减有序整数数组nums\texttt{nums}nums。建立并返回一个整数数组result\texttt{result}result,要求和nums\texttt{nums}nums长度相同,且result[
- 多维度数据资产测绘技术在安全管控平台中的应用实践
KKKlucifer
安全数据库
一、数据资产治理困境:从“黑箱”到“可见性”的行业挑战在数字化转型加速的当下,企业数据资产呈现爆发式增长,而传统资产梳理手段因维度单一、时效性差,导致“资产黑箱”问题频发。某省级运营商曾在安全评估中发现,其核心系统中40%的数据资产处于未知状态,敏感数据分布模糊、接口调用链路缺失,直接引发376起未授权访问事件。这类问题的本质在于:资产维度碎片化:仅从网络端口或数据库层面单一测绘,无法关联业务系统
- 电铸筛网 vs 传统筛网:究竟胜在哪些关键维度?
在工业筛选领域,电铸筛网与传统筛网的较量从未停歇。看似功能相似的两种产品,实则在核心性能上存在代际差异,这些差异直接决定了它们在不同场景中的适用性。第一维度:精度控制传统筛网依赖编织或冲压工艺,网孔尺寸误差常超过5%,且易出现孔形不规则、边缘毛糙等问题。而电铸筛网通过金属离子逐层沉积成型,网孔精度可控制在±1微米内,孔形一致性达99%以上。在电子浆料过滤、医药无菌筛分等微米级需求场景中,这种精度差
- 请用人话给我讲讲向量和张量的联系和区别
零点零一
AI资料python人工智能机器学习
请用人话给我讲讲向量和张量的联系和区别豆包咱们先从最熟悉的概念入手,一步步说清楚向量和张量的关系与区别,保证接地气。先搞懂“维度”:生活里的例子咱们先统一一个词:维度。你可以简单理解成“描述一个东西需要几个方向/参数”。比如一根直线,只有前后(或左右)一个方向,就是1维。一张纸,有左右和上下两个方向,就是2维。咱们生活的空间,有左右、上下、前后三个方向,就是3维。再复杂点,比如描述“今天的天气”,
- 华为OD机试C卷-- 伐木工(Java & JS & Python & C & C++)
飞码创造者
华为OD机试题库华为odc语言javajavascriptpython
获取题库不需要订阅专栏,可直接私信我进入CSDN领军人物top1博主的华为OD交流圈观看完整题库、最新面试实况、考试报告等内容以及大佬一对一答疑。题目描述一根X米长的树木,伐木工切割成不同长度的木材后进行交易,交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数;也可以不切割,直接拿整根树木进行交易。请问伐木工如何尽量少的切割,才能使收益最大化?输入描述木材的长度(X≤50)输出描述输
- 华为OD机试 2025 B卷 - 伐木工 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD2025B卷华为OD机考2025B卷华为OD机试2025B卷华为OD机试
伐木工华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述一根X米长的树木,伐木工切割成不同长度的木材后进行交易,交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数;也可以不切割,直接拿整根树木进行交易。请问伐木工如何尽量少的切割,才能使收益最大化?输入描述木材的长度(X≤50)输出描述输出最优收益时的
- java集群实现_JAVA应用服务器实现集群的原理
weixin_39778106
java集群实现
JAVA应用服务器实现集群的原理。各种应用服务器的集群实现方式一般不同,虽然原理一样,废话,集群的原理都一样,但是具体的实现真的是千差万别。TOMCAT5TOMCAT6的集群方式都不一样。TOMCAT5集群的实现是通过catalina-cluster.jarTOMCAT6集群的实现是通过catalina-ha.jar可以看的出来,实现方式已经有了非常大的变化了,直接导致配置文件发生了重大变化。JB
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- 116道网络安全面试真题(附答案),建议收藏!
程序员肉肉
web安全面试安全网络安全计算机程序员
116道网络安全面试真题(附答案),建议收藏!随着国家对网络安全的重视度,促使这个职业也变得炙手可热,越来越多的年轻人为进入安全领域在做准备。******数以百计的面试,为何迟迟无法顺利入职?********能力无疑是至关重要的,可却有不少能力不比已入职的同事差却应聘失败的人,那到底该如何做呢?为了帮助大家更快地拿到心仪Offer,我们给小伙伴们整理了一份**《网络安全工程师超高频面试真题》,结合
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- 毫秒级断电+AI预警:广州曼顿智能空开如何重新定义电气安全?
mdkk678
人工智能安全
在智慧城市、工业4.0与“双碳”目标的推动下,电力系统正经历从传统被动响应向主动智能防控的深刻变革。广州曼顿科技推出的智能空气开关,凭借毫秒级断电技术与AI预警系统的深度融合,不仅填补了传统断路器在响应速度、故障预判和能效管理上的技术空白,更以“零时差守护”理念重塑了电气安全的新范式。一、技术突破:毫秒级断电的“物理屏障”传统断路器依赖机械结构实现过载保护,其响应时间通常在数十毫秒以上,难以应对瞬
- 上位机软件开发哪家好?
深圳市由你创科技
上位机开发自动化c#labviewc++pythonc语言matlab
在工业自动化、医疗设备、新能源等领域,上位机软件如同“指挥官”,负责设备控制、数据分析和人机交互,直接影响生产效率和系统稳定性。然而,面对多协议兼容性差、开发周期不可控、后期维护成本高等难题,企业如何选择一家技术过硬、服务优质的上位机软件开发服务商?深圳市由你创科技有限公司凭借全栈技术能力、垂直行业经验及高效服务体系,深圳市由你创成为众多企业首选的上位机开发合作伙伴。本文深度解析上位机开发的关键要
- 爬虫-数据解析
打酱油的;
python自动化+爬虫爬虫
1.解析概述特性re(正则表达式)bs4(BeautifulSoup)xpath(lxml)pyquery本质文本模式匹配HTML/XML解析器(DOM树操作)XML路径语言(节点导航)jQuery式CSS选择器(封装lxml)学习曲线陡峭中等中等简单(熟悉jQuery/CSS)灵活性极高(处理任意文本)高(容错好,DOM操作)高(路径、轴、谓词)高(jQuery语法)可读性差(模式复杂时难懂)好
- Vue 2 和 Vue 3 区别
哈哈123453
vue.js前端javascripthtml
1.响应式系统原理Vue2:利用Object.defineProperty()实现属性拦截。存在局限性,无法自动监测对象属性增减,需用Vue.set/delete;数组变异方法要重写;深层对象递归转换性能差。Vue3:采用ES6Proxy代理对象,能直接拦截属性访问修改。无需特殊API就能监测属性变化;数组操作拦截更自然;深层响应式惰性处理,提升性能。javascript//Vue3响应式创建im
- Z-score异常值检测法
吴闹闹(●'◡'●)
人工智能算法
Z-score异常值检测法是一种基于统计学原理的异常值检测技术。它通过计算数据点与数据集平均值的标准化距离来判断该数据点是否为异常值。一、原理Z-score异常值检测法的原理是基于标准正态分布。它通过计算每个数据点与数据集平均值的差距,并将其转换为标准差的倍数,以此来评估数据点的异常程度。在标准正态分布中,大约68%的数据点位于平均值的一个标准差之内,95%的数据点位于两个标准差之内,而99.7%
- 从单体到微服务:Spring Cloud 开篇与微服务设计
chanalbert
SpringCloud微服务springcloud架构
一、单体架构的核心痛点与微服务化目标1.单体架构的致命缺陷问题表现后果可维护性差百万行代码耦合,修改一处需全量测试迭代周期长,创新停滞扩展性受限无法按模块独立扩缩容(如订单模块需扩容时,用户模块被迫一起扩容)资源浪费30%+技术固化全系统必须使用同一技术栈(如数据库选型)新技术无法局部试点部署风险高全量部署导致停机时间长,回滚困难业务中断损失每分钟数万美元2.微服务化的设计目标自治性:每个服务独立
- 中文大模型的技术债问题
大鹏的NLP博客
大模型transformer大模型
中文大模型的技术债问题摘要随着中文大语言模型(LargeLanguageModels,LLMs)在自然语言处理(NLP)领域的广泛应用,其研发和部署过程中积累的“技术债”(TechnicalDebt)问题日益突出。本文系统性地分析了中文大模型在数据采集、预训练、微调、评估与部署等生命周期各阶段产生的技术债类型,包括代码复杂性、数据隐患、训练流程依赖、工具链碎片化、模型解释性差、隐性资源耦合等问题,
- 如何将联系人从 iPhone 导入到Mac ?
如果您希望将联系人从iPhone无缝迁移到Mac,那么您应该选择经过验证的解决方案来确保过程顺利。将联系人从iPhone传输到Mac不仅需要一根USB数据线。面对现实,联系人信息极其宝贵,因此在转移过程中需要格外小心。如果您想掌握正确将联系人从iPhone导入到Mac的方法,请留意以下详细的实用信息。方法1:不使用iCloud/iTunes将iPhone中的联系人导入到Mac并非所有人都倾向于使用
- Java 并发编程:ReentrantLock原理与实战详解
一、引言在多线程编程中,线程安全始终是一个关键议题。Java在早期版本中提供了synchronized关键字作为内置锁机制,以支持基本的同步控制。然而,随着并发程序复杂度的提高,synchronized的局限性日益显现,主要体现在以下几个方面:功能受限:synchronized不支持尝试加锁、超时获取、可中断获取等高级功能。缺乏灵活性:一旦进入临界区就只能等待,无法主动退出。可观测性差:开发者无法
- 数据分析-59-SPC统计过程控制XR图和XS图和IMR图和CPK分析图
皮皮冰燃
数据分析数据分析SPC
文章目录1均值极差图XR1.1适用场景1.2构造步骤1.3代码示例2均值标准差图XS2.1适用场景2.2构造步骤2.3代码示例3IMR图3.1适用场景3.2构造步骤3.3代码示例4CPK分析图4.1CPK计算4.2创建步骤4.3代码示例XR控制图:子样本数量较小。XS控制图:子样本数量较大。IMR图。CPK分析图。1均值极差图XR均值-极差图(X̄-R图,Mean-RangeChart)是统计过程
- 技术解析|可灵AI全球首部AI单元剧《新世界加载中》工作流揭秘:提示词工程如何解决口型同步/复杂动作生成 ?
昨天,在北京首映礼的暗场中,一段黏土风格的荒诞喜剧画面投映在银幕上:一根「宇宙肥肠」在太空中漂浮,讽刺着人类对虚假进步的盲目崇拜。这便是快手可灵AI与异类Outliers团队共同推出的《新世界加载中》,全球首部AI单元剧集。这部与传统短剧不同的全新作品,用全新的呈现方式为观众带来了更具视觉冲击力的视觉效果和观影体验,成为AIGC领域的创新之作。然而,涵盖7个不同题材的单元剧集,必定涉及复杂的人物表
- 智能数字式毫秒计在实际生活场景中的应用
西安同步高经理
人工智能算法大数据
在电力领域,SYN5307型数字毫秒表可精准监测特高压变电站断路器合闸时间差,定位继电保护装置信号延迟;工业自动化中,优化汽车焊装线时序、提升半导体晶圆切割良率;科研计量上,助力量子通信同步校准,纳入多地计量院溯源体系;消防安全方面,保障消防联动效率与电梯应急合规;极端场景下稳定运行。一、电力系统:从继电保护到电网稳定性的精准守护1.断路器同期性测试的"黄金标准"在±800kV特高压变电站建设中,
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement