本文介绍在k8s集群中使用node-exporter、prometheus、grafana对集群进行监控。
其实现原理有点类似ELK、EFK组合。node-exporter组件负责收集节点上的metrics监控数据,并将数据推送给prometheus, prometheus负责存储这些数据,grafana将这些数据通过网页以图形的形式展现给用户。
在开始之前有必要了解下Prometheus是什么?
Prometheus (中文名:普罗米修斯)是由 SoundCloud 开发的开源监控报警系统和时序列数据库(TSDB).自2012年起,许多公司及组织已经采用 Prometheus,并且该项目有着非常活跃的开发者和用户社区.现在已经成为一个独立的开源项目。Prometheus 在2016加入 CNCF ( Cloud Native Computing Foundation ), 作为在 kubernetes 之后的第二个由基金会主持的项目。 Prometheus 的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适。另外相比influxdb的方案,性能更加突出,而且还内置了报警功能。它针对大规模的集群环境设计了拉取式的数据采集方式,只需要在应用里面实现一个metrics接口,然后把这个接口告诉Prometheus就可以完成数据采集了,下图为prometheus的架构图。
Prometheus的特点:
1、多维数据模型(时序列数据由metric名和一组key/value组成)
2、在多维度上灵活的查询语言(PromQl)
3、不依赖分布式存储,单主节点工作.
4、通过基于HTTP的pull方式采集时序数据
5、可以通过中间网关进行时序列数据推送(pushing)
6、目标服务器可以通过发现服务或者静态配置实现
7、多种可视化和仪表盘支持
prometheus 相关组件,Prometheus生态系统由多个组件组成,其中许多是可选的:
1、Prometheus 主服务,用来抓取和存储时序数据
2、client library 用来构造应用或 exporter 代码 (go,java,python,ruby)
3、push 网关可用来支持短连接任务
4、可视化的dashboard (两种选择,promdash 和 grafana.目前主流选择是 grafana.)
4、一些特殊需求的数据出口(用于HAProxy, StatsD, Graphite等服务)
5、实验性的报警管理端(alartmanager,单独进行报警汇总,分发,屏蔽等 )
promethues 的各个组件基本都是用 golang 编写,对编译和部署十分友好.并且没有特殊依赖.基本都是独立工作。
上述文字来自网络!
现在我们正式开始部署工作。
一、环境介绍
操作系统环境:centos linux 7.2 64bit
K8S软件版本: 1.9.0(采用kubeadm方式部署)
Master节点IP: 192.168.115.5/24
Node节点IP: 192.168.115.6/24
二、在k8s集群的所有节点上下载所需要的image
# docker pull prom/node-exporter
# docker pull prom/prometheus:v2.0.0
# docker pull grafana/grafana:4.2.0
三、采用daemonset方式部署node-exporter组件
# cat node-exporter.yaml
---
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
name: node-exporter
namespace: kube-system
labels:
k8s-app: node-exporter
spec:
template:
metadata:
labels:
k8s-app: node-exporter
spec:
containers:
- image: prom/node-exporter
name: node-exporter
ports:
- containerPort: 9100
protocol: TCP
name: http
---
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: node-exporter
name: node-exporter
namespace: kube-system
spec:
ports:
- name: http
port: 9100
nodePort: 31672
protocol: TCP
type: NodePort
selector:
k8s-app: node-exporter
通过上述文件创建pod和service
# kubectl create -f node-exporter.yaml
四、部署prometheus组件
1、rbac文件
# cat rbac-setup.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups: [""]
resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods
verbs: ["get", "list", "watch"]
- apiGroups:
- extensions
resources:
- ingresses
verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: prometheus
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: kube-system
2、以configmap的形式管理prometheus组件的配置文件
# cat configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-config
namespace: kube-system
data:
prometheus.yml: |
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-nodes'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics
- job_name: 'kubernetes-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-services'
kubernetes_sd_configs:
- role: service
metrics_path: /probe
params:
module: [http_2xx]
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__address__]
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
target_label: kubernetes_name
- job_name: 'kubernetes-ingresses'
kubernetes_sd_configs:
- role: ingress
relabel_configs:
- source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
regex: (.+);(.+);(.+)
replacement: ${1}://${2}${3}
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_ingress_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_ingress_name]
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
3、Prometheus deployment 文件
# cat prometheus.deploy.yml
---
apiVersion: apps/v1beta2
kind: Deployment
metadata:
labels:
name: prometheus-deployment
name: prometheus
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
containers:
- image: prom/prometheus:v2.0.0
name: prometheus
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: "/prometheus"
name: data
- mountPath: "/etc/prometheus"
name: config-volume
resources:
requests:
cpu: 100m
memory: 100Mi
limits:
cpu: 500m
memory: 2500Mi
serviceAccountName: prometheus
volumes:
- name: data
emptyDir: {}
- name: config-volume
configMap:
name: prometheus-config
4、Prometheus service文件
# cat prometheus.svc.yml
---
kind: Service
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus
namespace: kube-system
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
nodePort: 30003
selector:
app: prometheus
5、通过上述yaml文件创建相应的对象
# kubectl create -f rbac-setup.yaml
# kubectl create -f configmap.yaml
# kubectl create -f prometheus.deploy.yml
# kubectl create -f prometheus.svc.yml
Node-exporter对应的nodeport端口为31672,通过访问http://192.168.115.5:31672/metrics 可以看到对应的metrics
prometheus对应的nodeport端口为30003,通过访问http://192.168.115.5:30003/targets 可以看到prometheus已经成功连接上了k8s的apiserver
可以在prometheus的WEB界面上提供了基本的查询K8S集群中每个POD的CPU使用情况,查询条件如下:
sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )
上述的查询有出现数据,说明node-exporter往prometheus中写入数据正常,接下来我们就可以部署grafana组件,实现更友好的webui展示数据了。
五、部署grafana组件
1、grafana deployment配置文件
# cat grafana-deploy.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: grafana-core
namespace: kube-system
labels:
app: grafana
component: core
spec:
replicas: 1
template:
metadata:
labels:
app: grafana
component: core
spec:
containers:
- image: grafana/grafana:4.2.0
name: grafana-core
imagePullPolicy: IfNotPresent
# env:
resources:
# keep request = limit to keep this container in guaranteed class
limits:
cpu: 100m
memory: 100Mi
requests:
cpu: 100m
memory: 100Mi
env:
# The following env variables set up basic auth twith the default admin user and admin password.
- name: GF_AUTH_BASIC_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "false"
# - name: GF_AUTH_ANONYMOUS_ORG_ROLE
# value: Admin
# does not really work, because of template variables in exported dashboards:
# - name: GF_DASHBOARDS_JSON_ENABLED
# value: "true"
readinessProbe:
httpGet:
path: /login
port: 3000
# initialDelaySeconds: 30
# timeoutSeconds: 1
volumeMounts:
- name: grafana-persistent-storage
mountPath: /var
volumes:
- name: grafana-persistent-storage
emptyDir: {}
2、grafana service配置文件
# cat grafana-svc.yaml
apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: kube-system
labels:
app: grafana
component: core
spec:
type: NodePort
ports:
- port: 3000
selector:
app: grafana
component: core
3、grafana ingress配置文件
# cat grafana-ing.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: grafana
namespace: kube-system
spec:
rules:
- host: k8s.grafana
http:
paths:
- path: /
backend:
serviceName: grafana
servicePort: 3000
通过访问traefik的webui可以看到k8s.grafana服务发布成功
修改hosts解析,访问测试
默认用户名和密码都是admin
导入面板,可以直接输入模板编号315在线导入,或者下载好对应的json模板文件本地导入,面板模板下载地址https://grafana.com/dashboards/315
这里要说明一下,在测试过程中,导入编号为162的模板,发现只有部分数据,且pod的名称显示不友好。模板地址https://grafana.com/dashboards/162,详见下图。
六、后记
这里存在一些问题后续要继续研究解决。
1、prometheus的数据存储采用emptydir。如果Pod被删除,或者Pod发生迁移,emptyDir也会被删除,并且永久丢失。后续可以在K8S集群外部再配置一个Prometheus系统来永久保存监控数据, 两个prometheus系统之间通过配置job自动进行数据拉取。
2、Grafana的配置数据存储采用emptydir。如果Pod被删除,或者Pod发生迁移,emptyDir也会被删除,并且永久丢失。我们也可以选择将grafana配置在k8s外部,数据源选择K8S集群外部的prometheus即可。
3、关于监控项的报警(alertmanager)尚未配置。
参考文档,感谢作者分享!
https://www.kubernetes.org.cn/3418.html
https://blog.qikqiak.com/post/kubernetes-monitor-prometheus-grafana/
https://github.com/giantswarm/kubernetes-prometheus/tree/master/manifests
https://segmentfault.com/a/1190000013245394
转载:https://blog.51cto.com/ylw6006/2084403