(1)送给不喜欢编程的同学
http://bioinformatics.psb.ugent.be/webtools/Venn/
(1)导入准备做交集的文件。(2)点击submit选项。
其结果如下所示:
该网站可以完成最多30个数据集的交集绘制。其样式可以在上一步的output control修改。
(2)送给喜欢用Python的同学
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 18:35:51 2019
@author: czh
"""
%reset -f
%clear
# In[*]
#绘图代码
from matplotlib import pyplot as plt
import numpy as np
from matplotlib_venn import venn3, venn3_circles
plt.figure(figsize=(4,4))
v = venn3(subsets=(230,32,109,33,56,20,44),set_labels = ('A', 'B', 'C'))
plt.show()
import matplotlib.pyplot as plt
from matplotlib_venn import venn3
import matplotlib.patheffects as path_effects
fig, ax = plt.subplots(figsize=(10, 10))
v = venn3(subsets = (10, 10, 4, 10, 4, 4, 2), set_labels = ('', '', ''), ax=ax)
v.get_label_by_id('100').set_text('Executive')
v.get_label_by_id('010').set_text('Legislative')
v.get_label_by_id('001').set_text('Judicial')
v.get_label_by_id('110').set_text('Example 1')
v.get_label_by_id('011').set_text('Example 2')
v.get_label_by_id('101').set_text('Example 3')
v.get_label_by_id('111').set_text('')
plt.title("The Three Branches of the US Government")
example_text = ('Example 1: The Vice President is considered "President of the Senate" and can vote to break ties.\n'
'Example 2: The Legislature confirms Supreme Court justices.\n'
'Example 3: The Executive appoints potential Supreme Court justices.')
text = fig.text(0.0, 0.05, example_text, ha='left', va='bottom', size=14)
text.set_path_effects([path_effects.Normal()])
plt.show()
python的限制比较明显,不能做三个以上数据集的交集,所以推荐用R语言来做。
(3)喜欢R语言的同学
- venneuler包
setwd('D:\\F1\\deg')
rm(list=ls())
library(venneuler)
MyVenn <- venneuler(c(A=50,B=50,C=50,"A&B"=10,"A&C"=10,"B&C"=10,"A&B&C"=3))
MyVenn$labels <- c("","","",
"","",
"")
plot(MyVenn)
text(0.4,0.2,"A(n=60)", cex = 1)
text(0.4,0.8,"B(n=70)", cex = 1)
text(0.75,0.5,"C(n=50)", cex = 1)
text(0.5,0.5,"5", cex = 1)
text(0.4,0.5,"10", cex = 1)
text(0.55,0.4,"20", cex = 1)
text(0.5,0.6,"30", cex = 1)
这个代码从逻辑上看比较简单,仅仅在text上修改显示的内容即可。
- VennDiagram包
library(VennDiagram)
A = 1:150
B = c(121:170,300:320)
C = c(20:40,141:200)
Length_A<-length(A)
Length_B<-length(B)
Length_C<-length(C)
Length_AB<-length(intersect(A,B))
Length_BC<-length(intersect(B,C))
Length_AC<-length(intersect(A,C))
Length_ABC<-length(intersect(intersect(A,B),C))
T<-venn.diagram(list(A=A,B=B),filename=NULL
,lwd=1,lty=2
,col=c('red','green'),fill=c('red','green')
,cat.col=c('red','green')
,rotation.degree=90)
grid.draw(T)
T<-venn.diagram(list(A=A,B=B,C=C),filename=NULL
,lwd=1,lty=2,col=c('red','green','blue')
,fill=c('red','green','blue')
,cat.col=c('red','green','blue')
,reverse=TRUE)
grid.draw(T)
(4)UpSetR包
正文
介绍一个R包UpSetR,专门用来集合可视化,更受杂志和编辑喜欢。
原理比较简单,做法大概分为两种,第一种是定义数据集后,画图自动取交集。第二种做法是先取交集,然后画图。绘制韦恩图的目的主要是查看数据集之间的异同。
(1)第一种:定义数据集后直接画图取交集
library(UpSetR)
library(dplyr)
library(tidyr)
rm(list=ls())
diff <- read.csv("diffSig_ttest.csv",header = T,row.names = 1)
加载包和所使用的数据。
AA <- subset(diff, splice_type=="AA")
AD <- subset(diff, splice_type=="AD")
AP <- subset(diff, splice_type=="AP")
AT <- subset(diff, splice_type=="AT")
取出准备取交集的数据集们
#fromList
listinput <- list(AD = AD$symbol,
AP = AP$symbol,
AA = AA$symbol,
AT = AT$symbol)
library(UpSetR)
# pdf(file='upset.pdf',height = 8,width = 8)
p <- upset(fromList(listinput),nsets = 4, order.by = "freq")
# dev.off()
绘制图片
(2)取交集后在画图
setwd("E:\\Rwork")
library(UpSetR)
require(ggplot2);
require(plyr);
require(gridExtra);
require(grid);
input <- c(
'cancer1'= 1578,
'cancer2' = 1284,
'cancer3' = 2488,
'cancer1&cancer2' =205,
'cancer1&cancer3' = 828,
'cancer2&cancer3' =589,
'cancer1&cancer2&cancer3' =120
)
data <- fromExpression(input)
p1 <- upset(data, nsets = 9,
sets = c('cancer1',
'cancer2' ,
'cancer3'),
keep.order = TRUE,
# number.angles = 30,
point.size = 5,
line.size = 1.3,
mainbar.y.label = "IntersectionSize",
sets.x.label = "",
mb.ratio = c(0.60, 0.40),
text.scale = c(4, 4, 0.5, 0.5,3, 4))
p1