海量数据的查询操作

数据结构

本文涉及到一些大数据处理需要的数据结构,写在另一篇文章中:https://www.jianshu.com/p/00adff066604

前言

所谓海量数据处理,无非就是基于海量数据上的存储、处理、操作。何谓海量,就是数据量太大,所以导致要么是无法在较短时间内迅速解决,要么是数据太大,导致无法一次性装入内存。
那解决办法呢?针对时间,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树,针对空间,无非就一个办法:大而化小,分而治之(hash映射),你不是说规模太大嘛,那简单啊,就把规模大化为规模小的,各个击破不就完了嘛。
至于所谓的单机及集群问题,通俗点来讲,单机就是处理装载数据的机器有限(只要考虑cpu,内存,硬盘的数据交互),而集群,机器有多辆,适合分布式处理,并行计算(更多考虑节点和节点间的数据交互)。
处理海量数据问题,无非就是:

  1. 分而治之/hash映射 + hash统计 + 堆/快速/归并排序;
  2. 双层桶划分
  3. Bloom filter/Bitmap;
  4. Trie树/数据库/倒排索引;
  5. 外排序;
  6. 分布式处理之Hadoop/Mapreduce。

基础数据结构

海量数据的查询操作_第1张图片
底层实现对应图

set/map关联式容器分为set(集合)和map(映射表)两大类
这两大类的衍生体multiset(多键集合)和multimap(多键映射表),这些容器均以RB-tree完成。
还有第3类关联式容器,如hashtable(散列表),以及以hashtable为底层机制完成的hash_set(散列集合)/hash_map(散列映射表)/hash_multiset(散列多键集合)/hash_multimap(散列多键映射表)。也就是说,set/map/multiset/multimap都内含一个RB-tree,而hash_set/hash_map/hash_multiset/hash_multimap都内含一个hashtable。

  • 关于红黑树:https://www.jianshu.com/p/18e58309f28c

  • 关于STL:https://www.jianshu.com/p/1f8329e26231

  • 关于hashtable
    当数据量基本上int型key时,hash table是rbtree的3-4倍,但hash table一般会浪费大概一半内存。

    因为hash table所做的运算就是个%,而rbtree要比较很多,比如rbtree要看value的数据 ,每个节点要多出3个指针(或者偏移量) 如果需要其他功能,比如,统计某个范围内的key的数量,就需要加一个计数成员。

六种处理模式方案

方案一:分而治之/Hash映射 + Hash_map统计 + 堆/快速/归并排序

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

针对这个数据的海量,我们如何着手呢?可以采用:分而治之/hash映射 + hash统计 + 堆/快速/归并排序,说白了,就是先映射,而后统计,最后排序:

  • 分而治之/hash映射:针对数据太大,内存受限,只能是:把大文件化成(取模映射)小文件,即16字方针:大而化小,各个击破,缩小规模,逐个解决
  • hash_map统计:当大文件转化了小文件,那么我们便可以采用常规的hash_map(ip,value)来进行频率统计。
  • 堆/快速排序:统计完了之后,便进行排序(可采取堆排序),得到次数最多的IP。

具体方案 :首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如%1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map对那1000个文件中的所有IP进行频率统计,然后依次找出各个文件中频率最大的那个IP)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

2、寻找热门查询,300万个查询字符串中统计最热门的10个查询

题目:搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

解答:由上面第1题,我们知道,数据大则划为小的,如一亿个Ip求Top 10,可先%1000将ip分到1000个小文件中去,并保证一种ip只出现在一个文件中,再对每个小文件中的ip进行hashmap计数统计并按数量排序,最后归并或者最小堆依次处理每个小文件的top10以得到最后的结。

但如果数据规模比较小,能一次性装入内存呢?比如这第2题,虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query255Byte,因此我们可以考虑把他们都放进内存中去(300万个字符串假设没有重复,都是最大长度,那么最多占用内存3M1K/4=0.75G。所以可以将所有字符串都存放在内存中进行处理),而现在只是需要一个合适的数据结构,在这里,HashTable*绝对是我们优先的选择。

所以我们放弃分而治之/hash映射的步骤,直接上hash统计,然后排序。So,针对此类典型的TOP K问题,采取的对策往往是:hashmap + 堆。如下所示:

  1. hash_map统计:先对这批海量数据预处理。具体方法是:维护一个Key为Query字串,Value为该Query出现次数的HashTable,即hash_map(Query,Value),每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内用Hash表完成了统计;
  2. 堆排序:第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。即借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。所以,我们最终的时间复杂度是:O(N) + N' * O(logK),(N为1000万,N’为300万)。

堆排序思路:“维护k个元素的最小堆,即用容量为k的最小堆存储最先遍历到的k个数,并假设它们即是最大的k个数,建堆费时O(k),并调整堆(费时O(logk))后,有k1>k2>...kmin(kmin设为小顶堆中最小元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比较,若x>kmin,则更新堆(x入堆,用时logk),否则不更新堆。这样下来,总费时O(klogk+(n-k)logk)=O(nlogk)。此方法得益于在堆中,查找等各项操作时间复杂度均为logk。
当然,你也可以采用
trie树*,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3.query按照频度排序

题目:有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

方案1:按照分而治之/hash映射 + hash统计 + 堆/快速/归并排序的套路:

  1. hash映射:顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为a0,a1,..a9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
  2. hash_map统计:找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。注:hash_map(query,query_count)是用来统计每个query的出现次数,不是存储他们的值,出现一次,则count+1。
  3. 堆/快速/归并排序:利用快速/堆/归并排序按照出现次数进行排序,将排序好的query和对应的query_cout输出到文件中,这样得到了10个排好序的文件。最后,对这10个文件进行归并排序(内排序与外排序相结合)

方案2:一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。
方案3:与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

方案二:多层划分

多层划分----其实本质上还是分而治之的思想,重在“分”的技巧上!
  适用范围:第k大,中位数,不重复或重复的数字
  基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。

4. 2.5亿个整数中找出不重复的整数的个数

2.5亿个整数中找出不重复的整数的个数内存空间不足以容纳这2.5亿个整数。

解决方案:有点像鸽巢原理,整数个数为232,也就是,我们可以将这232个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

5. 5亿个int找它们的中位数。

思路一:这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

思路二:同样需要做两遍统计,如果数据存在硬盘上,就需要读取2次。
方法同基数排序有些像,开一个大小为65536的Int数组,第一遍读取,统计Int32的高16位的情况,也就是0-65535,都算作0,65536 - 131071都算作1。就相当于用该数除以65536。Int32 除以 65536的结果不会超过65536种情况,因此开一个长度为65536的数组计数就可以。每读取一个数,数组中对应的计数+1,考虑有负数的情况,需要将结果加32768后,记录在相应的数组内。
第一遍统计之后,遍历数组,逐个累加统计,看中位数处于哪个区间,比如处于区间k,那么0- k-1的区间里数字的数量sum应该

方案三:Bloom filter/Bitmap

Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
原理:Bloom Filter是一种空间效率很高的随机数据结构,它的原理是,当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检索元素一定不在;如果都是1,则被检索元素很可能在。这就是布隆过滤器的基本思想。

6.给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?.

如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bitmap

7、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。
方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。”

8.给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

方案1:用位图/Bitmap的方法,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

方案四:Trie树/倒排索引(Inverted index)

Trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存
基本原理及要点:实现方式,节点孩子的表示方式

9.统计文本文件频次多的词

一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词。其解决方法是:用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度),然后是找出出现最频繁的前10个词。

倒排索引

适用范围:搜索引擎,关键字查询
基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。
反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。
问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

方案五、外排序

适用范围:大数据的排序,去重
基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

问题10.

有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。
  这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1M做hash明显不够,所以可以用来排序。内存可以当输入缓冲区使用。

方案六:分布式处理之Mapreduce

MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个归并排序。
适用范围:数据量大,但是数据种类小可以放入内存
基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

你可能感兴趣的:(海量数据的查询操作)