Handler Looper MessageQueue之间的协作

上篇文章分析了Handler消息机制,这篇文章就分析Looper MessageQueue Handler 之间的调用关系

Looper的创建

  1. 首先看下ActivityThread的main()函数:
  public static void main(String[] args) {
        ........................................................
        Looper.prepareMainLooper();

        ActivityThread thread = new ActivityThread();
        thread.attach(false);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }

        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }

        Looper.loop();
}
  1. 进入Looper.prepareMainLooper();
public final class Looper {
     static final ThreadLocal sThreadLocal = new ThreadLocal();
     private static Looper sMainLooper;
     //创建Looper
     private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        //将Looper创建变存入sThreadLocal
        sThreadLocal.set(new Looper(quitAllowed));
      }

     public static void prepareMainLooper() {
        prepare(false);//创建Looper
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
      }
}
 public static @Nullable Looper myLooper() {
        return sThreadLocal.get();//取出Looper
    }

由上代码可以看出主线程中的Looper是通过sThreadLocal获取的 那么ThreadLocal这个类是干什么的呢 我们去源码看看

public class ThreadLocal {
       //获取Looper
        public T get() {
        Thread t = Thread.currentThread();//获取当前线程
        ThreadLocalMap map = getMap(t);//根据当前线程ThreadLocalMap
        if (map != null) {
            //通过当前线程为key获取Looper
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null)
                return (T)e.value;
        }
        return setInitialValue();
        }
        //保存Looper
        public void set(T value) {
               Thread t = Thread.currentThread();//获取当前线程
               ThreadLocalMap map = getMap(t);//根据当前线程ThreadLocalMap
               if (map != null)
                    map.set(this, value);//以当前线程作为key  Looper作为value保存
                    else
                    createMap(t, value);
        }
        //初始化 ThreadLocalMap
        private T setInitialValue() {
           T value = initialValue();
           Thread t = Thread.currentThread();
           ThreadLocalMap map = getMap(t);
           if (map != null)
              map.set(this, value);
           else
              createMap(t, value);
           return value;
        }
        //根据线程获取ThreadLocalMap
       ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
      }
      //ThreadLocalMap 其本质就是一个HasMap 但是却比HasMap更优化 其散列更均匀
      static class ThreadLocalMap {
      }
}

通过分析ThreadLocal 就知道了其内部有一个ThreadLocalMap散列表 通过获取当前线程作为key Looper作为Value存储 这样的好处有哪些呢

  • 保证Looper的线程安全 相当于同步锁 因为在同一线程下Looper只有一个(HasMap存储原理 key相同 value不同 就替换Value的值)
  • 节省不必要的内存开支,无论你在客户端创建多少个Handler 但是该线程下的Looper只有一个

** Handler与Looper的关联**

  1. 由上面看到了Looper在ActivityThread的main()函数通过Looper.prepareMainLooper()就创建好了 那么Handler又是如何与之相联的呢
public class MainActivity extends AppCompatActivity {
    //平时一般的写法
    private Handler handler=new Handler(new Handler.Callback() {
           @Override
            public boolean handleMessage(Message msg) {
                return false;
            }
        });
}
public class Handler {
        final Looper mLooper;
        //Handler构造
        public Handler() {
              this(null, false);
        }
        public Handler(Callback callback, boolean async) {
            。。。。。。
        //Looper就在这里与Handler关联了
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        //获取消息列表
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
public final class Looper {
     public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
    }
}

现在分析下就知道了 由于我们的Handler在主线程创建的 那么时候其关联的就是Looper.prepareMainLooper()所创建的Looper 同理MessageQueue也是一样 在Looper创建的时候也一同创建了

private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
     ......
    }

MessageQueue的入队和出队

  1. Handler通获取Looper中MessageQueue 发送消息的时候将消息插入MessageQueue队列并进行以处理时间排序
//handler发送消息
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
  //将消息入队
  private boolean enqueueMessage(MessageQueue queue, Message   msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
//MessageQueue插入消息msg 并以when排序 这里涉及数据结构和算法 不做过多分析
boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
  1. 从MessageQueue取出消息
  //取出消息 请结合MessageQueue整体源码分析
    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

最后
由上面分析知道了Handler Looper MessageQueue之间是如何协作的 但是都是在主线程中使用的 那么如何在分线程中使用Handler Looper呢 其实在Looper的源码注释中已经给了答案

class LooperThread extends Thread {
        public Handler mHandler;
  
       public void run() {
           Looper.prepare();//创建Looper
  
            mHandler = new Handler() {
                public void handleMessage(Message msg) {
                   // process incoming messages here
                }
            };
  
           Looper.loop();//开启循环
       }

你可能感兴趣的:(Handler Looper MessageQueue之间的协作)