Spark-One-Day-RDD

转载来自:http://dblab.xmu.edu.cn/blog/1681-2/

Spark的核心是建立在统一的抽象RDD之上,使得Spark的各个组件可以无缝进行集成,在同一个应用程序中完成大数据计算任务。RDD的设计理念源自AMP实验室发表的论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。

1.RDD设计背景

RDD它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销。

2.RDD概念

RDD典型的执行过程如下:

1、RDD读入外部数据源(或者内存中的集合)进行创建;

2、RDD经过一系列的“转换”操作,每一次都会产生不同的RDD,供给下一个“转换”使用;

3、最后一个RDD经“行动”操作进行处理,并输出到外部数据源(或者变成Scala集合或标量)。

当F要进行输出时,也就是当F进行“行动”操作的时候,Spark才会根据RDD的依赖关系生成DAG,并从起点开始真正的计算。

3.一个例子

例1:一个Spark的“Hello World”程序在pyspark的交互环境下,输入如下代码

这里以一个“Hello World”入门级Spark程序来解释RDD执行过程,这个程序的功能是读取一个HDFS文件,计算出包含字符串“Hello World”的行数。

启动pyspark

PYSPARK_PYTHON=python3 ./bin/pyspark

fileRDD = sc.textFile('hdfs://localhost:9000/test.txt')

def contains(line):

...    return 'hello world' in line

filterRDD = fileRDD.filter(contains)

filterRDD.cache()

filterRDD.count()

可以看出,一个Spark应用程序,基本是基于RDD的一系列计算操作。第1行代码从HDFS文件中读取数据创建一个RDD;第2、3行定义一个过滤函数;第4行代码对fileRDD进行转换操作得到一个新的RDD,即filterRDD;第5行代码表示对filterRDD进行持久化,把它保存在内存或磁盘中(这里采用cache接口把数据集保存在内存中),方便后续重复使用,当数据被反复访问时(比如查询一些热点数据,或者运行迭代算法),这是非常有用的,而且通过cache()可以缓存非常大的数据集,支持跨越几十甚至上百个节点;第5行代码中的count()是一个行动操作,用于计算一个RDD集合中包含的元素个数。这个程序的执行过程如下:

*  创建这个Spark程序的执行上下文,即创建SparkContext对象;

*  从外部数据源(即HDFS文件)中读取数据创建fileRDD对象;

*  构建起fileRDD和filterRDD之间的依赖关系,形成DAG图,这时候并没有发生真正的计算,只是记录转换的轨迹;

*  执行到第6行代码时,count()是一个行动类型的操作,触发真正的计算,开始实际执行从fileRDD到filterRDD的转换操作,并把结果持久化到内存中,最后计算出filterRDD中包含的元素个数。


4.RDD之间的依赖关系

宽依赖则表现为存在一个父RDD的一个分区对应一个子RDD的多个分区。比如图9-10(b)中,RDD9是RDD12的父RDD,RDD9中的分区24对应了RDD12中的两个分区(即分区27和分区28)。

总体而言,如果父RDD的一个分区只被一个子RDD的一个分区所使用就是窄依赖,否则就是宽依赖。窄依赖典型的操作包括map、filter、union等,宽依赖典型的操作包括groupByKey、sortByKey等。对于连接(join)操作,可以分为两种情况。

(1)对输入进行协同划分,属于窄依赖(如图9-10(a)所示)。所谓协同划分(co-partitioned)是指多个父RDD的某一分区的所有“键(key)”,落在子RDD的同一个分区内,不会产生同一个父RDD的某一分区,落在子RDD的两个分区的情况。

(2)对输入做非协同划分,属于宽依赖,如图9-10(b)所示。

对于窄依赖的RDD,可以以流水线的方式计算所有父分区,不会造成网络之间的数据混合。对于宽依赖的RDD,则通常伴随着Shuffle操作,即首先需要计算好所有父分区数据,然后在节点之间进行Shuffle。


Spark-One-Day-RDD_第1张图片

5.阶段的划分

Spark通过分析各个RDD的依赖关系生成了DAG,再通过分析各个RDD中的分区之间的依赖关系来决定如何划分阶段,具体划分方法是:在DAG中进行反向解析,遇到宽依赖就断开,遇到窄依赖就把当前的RDD加入到当前的阶段中;将窄依赖尽量划分在同一个阶段中,可以实现流水线计算。


Spark-One-Day-RDD_第2张图片

由上述论述可知,把一个DAG图划分成多个“阶段”以后,每个阶段都代表了一组关联的、相互之间没有Shuffle依赖关系的任务组成的任务集合。每个任务集合会被提交给任务调度器(TaskScheduler)进行处理,由任务调度器将任务分发给Executor运行。

6.RDD运行过程

再总结一下RDD在Spark架构中的运行过程(如图9-12所示):

(1)创建RDD对象;

(2)SparkContext负责计算RDD之间的依赖关系,构建DAG;

(3)DAGScheduler负责把DAG图分解成多个阶段,每个阶段中包含了多个任务,每个任务会被任务调度器分发给各个工作节点(Worker Node)上的Executor去执行。


Spark-One-Day-RDD_第3张图片

7.Spark三种部署方式

standalone、Spark on Mesos 和 Spark on YARN

8.从“Hadoop+Storm”架构转向Spark架构

为了能同时进行批处理与流处理,企业应用中通常会采用“Hadoop+Storm”的架构(也称为Lambda架构)。


Spark-One-Day-RDD_第4张图片

Spark Streaming的原理是将流数据分解成一系列短小的批处理作业,每个短小的批处理作业使用面向批处理的Spark Core进行处理,通过这种方式变相实现流计算,而不是真正实时的流计算,因而通常无法实现毫秒级的响应。因此,对于需要毫秒级实时响应的企业应用而言,仍然需要采用流计算框架(如Storm)。


Spark-One-Day-RDD_第5张图片

9.Hadoop和Spark的统一部署












杜峰

你可能感兴趣的:(Spark-One-Day-RDD)